Search results for: adaptive cluster sampling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4680

Search results for: adaptive cluster sampling

3480 Students’ Post COVID-19 Experiences with E-Learning Platforms among Undergraduate Students of Public Universities in the Ashanti Region, Ghana

Authors: Michael Oppong, Stephanie Owusu Ansah, Daniel Ofori

Abstract:

The study investigated students’ post-covid-19 experiences with e-learning platforms among undergraduate students of public universities in the Ashanti region of Ghana. The study respectively drew 289 respondents from two public universities, i.e., Kwame Nkrumah University of Science and Technology (KNUST) Business School and the Kumasi Technical University (KsTU) Business School in Ghana. Given that the population from the two public universities was fairly high, sampling had to be done. The overall population of the study was 480 students randomly sampled from the two public universities using the sampling ratio given by Alreck and Settle (2004). The population constituted 360 students from the Kwame Nkrumah University of Science and Technology (KNUST) Business School and 120 from the Kumasi Technical University Business School (KsTU). The study employed questionnaires as a data collection tool. The data gathered were 289 responses out of 480 questionnaires administered, representing 60.2%. The data was analyzed using pie charts, bar charts, percentages, and line graphs. Findings revealed that the e-learning platforms were still useful. However, the students used it on a weekly basis post-COVID-19, unlike in the COVID-19 era, where it was used daily. All other academic activities, with the exception of examinations, are still undertaken on the e-learning platforms; however, it is underutilized in the post-COVID-19 experience. The study recommends that universities should invest in infrastructure development to enable all academic activities, most especially examinations, to be undertaken using the e-learning platforms to curtail future challenges.

Keywords: e-learning platform, undergraduate students, post-COVID-19 experience, public universities

Procedia PDF Downloads 98
3479 Correlates of Comprehensive HIV/AIDS Knowledge and Acceptance Attitude Towards People Living with HIV/AIDS: A Cross-Sectional Study among Unmarried Young Women in Uganda

Authors: Tesfaldet Mekonnen Estifanos, Chen Hui, Afewerki Weldezgi

Abstract:

Background: Youth in general and young females in particular, remain at the center of the HIV/AIDS epidemic. Sexual risk-taking among young unmarried women is relatively high and are the most vulnerable and highly exposed to HIV/AIDS. Improvements in the status of HIV/AIDS knowledge and acceptance attitude towards people living with HIV (PLWHIV) plays a great role in averting the incidence of HIV/AIDS. Thus, the aim of the study was to explore the level and correlates of HIV/AIDS knowledge and accepting attitude toward PLWHIV. Methods: A cross-sectional study was conducted using data from the Uganda Demographic Health Survey 2016 (UDHS-2016). National level representative household surveys using a multistage cluster probability sampling method, face to face interviews with standard questionnaires were performed. Unmarried women aged 15-24 years with a sample size of 2019 were selected from the total sample of 8674 women aged 15-49 years and were analyzed using SPSS version 23. Independent variables such as age, religion, educational level, residence, and wealth index were included. Two binary outcome variables (comprehensive HIV/AIDS knowledge and acceptance attitude toward PLWHIV) were utilized. We used the chi-square test as well as multivariate regression analysis to explore correlations of explanatory variables with the outcome variables. The results were reported by odds ratios (OR) with 95% confidence interval (95% CI), taking a p-value less than 0.05 as significant. Results: Almost all (99.3%) of the unmarried women aged 15-24 years were aware of HIV/AIDS, but only 51.2% had adequate comprehensive knowledge on HIV/AIDS. Only 69.4% knew both methods: using a condom every time had sex, and having only one faithful uninfected partner can prevent HIV/AIDS transmission. About 66.6% of the unmarried women reject at least two common local misconceptions about HIV/AIDS. Moreover, an alarmingly few (20.3%) of the respondents had a positive acceptance attitude to PLWHIV. On multivariate analysis, age (20-24 years), living in urban, being educated and wealthier, were predictors of having adequate comprehensive HIV/AIDS knowledge. On the other hand, research participants with adequate comprehensive knowledge about HIV/AIDS were highly likely (OR, 1.94 95% CI, 1.52-2.46) to have a positive acceptance attitude to PLWHIV than those with inadequate knowledge. Respondents with no education, Muslim, and Pentecostal religion were emerged less likely to have a positive acceptance attitude to PLWHIV. Conclusion: This study found out the highly accepted level of awareness, but the knowledge and positive acceptance attitude are not encouraging. Thus, expanding access to comprehensive sexuality and strengthening educational campaigns on HIV/AIDS in communities, health facilities, and schools is needed with a greater focus on disadvantaged women having low educational level, poor socioeconomic status, and those residing in rural areas. Sexual risk behaviors among the most affected people - young women have also a role in the spread of HIV/AIDS. Hence, further research assessing the significant contributing factors for sexual risk-taking might have a positive impact on the fight against HIV/AIDS.

Keywords: acceptance attitude, HIV/AIDS, knowledge, unmarried women

Procedia PDF Downloads 152
3478 Assessing and Identifying Factors Affecting Customers Satisfaction of Commercial Bank of Ethiopia: The Case of West Shoa Zone (Bako, Gedo, Ambo, Ginchi and Holeta), Ethiopia

Authors: Habte Tadesse Likassa, Bacha Edosa

Abstract:

Customer’s satisfaction was very important thing that is required for the existence of banks to be more productive and success in any organization and business area. The main goal of the study is assessing and identifying factors that influence customer’s satisfaction in West Shoa Zone of Commercial Bank of Ethiopia (Holeta, Ginchi, Ambo, Gedo and Bako). Stratified random sampling procedure was used in the study and by using simple random sampling (lottery method) 520 customers were drawn from the target population. By using Probability Proportional Size Techniques sample size for each branch of banks were allocated. Both descriptive and inferential statistics methods were used in the study. A binary logistic regression model was fitted to see the significance of factors affecting customer’s satisfaction in this study. SPSS statistical package was used for data analysis. The result of the study reveals that the overall level of customer’s satisfaction in the study area is low (38.85%) as compared those who were not satisfied (61.15%). The result of study showed that all most all factors included in the study were significantly associated with customer’s satisfaction. Therefore, it can be concluded that based on the comparison of branches on their customers satisfaction by using odd ratio customers who were using Ambo and Bako are less satisfied as compared to customers who were in Holeta branch. Additionally, customers who were in Ginchi and Gedo were more satisfied than that of customers who were in Holeta. Since the level of customers satisfaction was low in the study area, it is more advisable and recommended for concerned body works cooperatively more in maximizing satisfaction of their customers.

Keywords: customers, satisfaction, binary logistic, complain handling process, waiting time

Procedia PDF Downloads 465
3477 Assessment of Estrogenic Contamination and Potential Risk in Taihu Lake, China

Authors: Guanghua Lu, Zhenhua Yan

Abstract:

To investigate the estrogenic contamination and potential risk of Taihu Lake, eight active biomonitoring points in the northern section of Taihu Lake were set up and located in Wangyuhe River outlet (P1), Gonghu Bay (P2 and P3), Meiliang Bay (P4 and P5), Zhushan Bay (P6 and P7) and Lake Centre (P8). A suite of biomarkers in caged fish after in situ exposure for 28 days, coupled with six selected exogenous estrogens in water, were determined in May and December 2011. Six target estrogens, namely estrone (E1), 17b-estradiol (E2), ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES) and bisphenol A (BPA), were quantified using UPLC/MS/MS. The concentrations of E1, E2, E3, EE2, DES and BPA ranged from ND to 3.61 ng/L, ND to 17.3 ng/L, ND to 1.65 ng/L, ND to 10.2 ng/L, ND to 34.6 ng/L, and 3.95 to 207 ng/L, respectively. BPA was detected at all sampling points at all test periods, E2 was detected at 95% of samples, E1 and EE2 was detected at 75% of samples, and E3 was detected only in December 2011 with quite low concentrations. Each individual estrogen concentration measured at each sampling point was multiplied by its relative potency to gain the estradiol equivalent (EEQ). The total EEQ values in all the monitoring points ranged from 5.69 to 17.8 ng/L in May 2011, and from 4.46 to 21.1 ng/L in December 2011. E2 and EE2 were thought to be the major causal agents responsible for the estrogenic activities. Serum vitellogenin and E2 levels, gonadal DNA damage, and gonadosomatic index were measured in the in situ exposed fish. An enhanced integrated biomarker response (EIBR) was calculated and used to evaluate potential feminization risk of fish in the polluted area of Taihu Lake. EIBR index showed good agreement with the observed total EEQ levels in water. Our results indicated that Gong bay and the lake center had a low estrogenic risk, whereas Wangyuhe River, Meiliang Bay, and Zhushan Bay might present a higher risk to fish.

Keywords: active biomonitoring, estrogen, feminization risk, Taihu Lake

Procedia PDF Downloads 277
3476 REFLEX: A Randomized Controlled Trial to Test the Efficacy of an Emotion Regulation Flexibility Program with Daily Measures

Authors: Carla Nardelli, Jérome Holtzmann, Céline Baeyens, Catherine Bortolon

Abstract:

Background. Emotion regulation (ER) is a process associated with difficulties in mental health. Given its transdiagnostic features, its improvement could facilitate the recovery of various psychological issues. A limit of current studies is the lack of knowledge regarding whether available interventionsimprove ER flexibility (i.e., the ability to implement ER strategies in line with contextual demands), even though this capacity has been associated with better mental health and well-being. Therefore, the aim of the study is to test the efficacy of a 9-weeks ER group program (the Affect Regulation Training-ART), using the most appropriate measures (i.e., experience sampling method) in a student population. Plus, the goal of the study is to explore the potential mediative role of ER flexibility on mental health improvement. Method. This Randomized Controlled Trial will comparethe ER program group to an active control group (a relaxation program) in 100 participants. To test the mediative role of ER flexibility on mental health, daily measures will be used before, during, and after the interventions to evaluate the extent to which participants are flexible in their ER. Expected outcomes. Using multilevel analyses, we expect an improvement in anxious-depressive symptomatology for both groups. However, we expect the ART group to improve specifically on ER flexibility ability and the last to be a mediative variable on mental health. Conclusion. This study will enhance knowledge on interventions for students and the impact of interventions on ER flexibility. Also, this research will improve knowledge on ecological measures for assessing the effect of interventions. Overall, this project represents new opportunities to improve ER skills to improve mental health in undergraduate students.

Keywords: emotion regulation flexibility, experience sampling method, psychological intervention, emotion regulation skills

Procedia PDF Downloads 136
3475 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement

Authors: Yohannes Bisa Biramo

Abstract:

This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.

Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers

Procedia PDF Downloads 84
3474 Prevalance and Factors Associated with Domestic Violence among Preganant Women in Southwest Ethiopia

Authors: Bediru Abamecha

Abstract:

Background: Domestic violence is a global problem that occurs regardless of culture, ethnicity or socio-economic class. It is known to be responsible for numerous hospital visits undertaken by women. Violence on pregnant women is a health and social problem that poses particular risks to the woman and her unborn child. Objective: The Objective of this study will be to assess prevalence of domestic violence and its correalates among pregnant women in Manna Woreda of Jimma Zone. Methods: Simple Random Sampling technique will be used to select 12 kebeles (48% of the study area) and Systematic Sampling will be used to reach to the house hold in selected kebeles in manna woreda of Jimma zone, south west Ethiopia from february 15-25, 2011. An in-depth interview will be conducted on Women affairs, police office and Nurses working and minimum of 4FGD with 6-8 members on pregnant women and selected male from the community. SPSS version 16.0 will be used to enter, clean and analyze the data. Descriptive statistics such as mean or median for continuous variables and percent for categorical variables will be made. Bivariate analysis will be used to check the association between independent variables and domestic violence. Variables found to have association with domestic violence will be entered to multiple logistic regressions for controlling the possible effect of confounders and finally the variables which had significance association will be identified on basis of OR, with 95% CI. All statistical significance will be considered at p<0.05. The qualitative data will be summarized manually and thematic analysis will be performed and finally both will be triangulated.

Keywords: ante natal care, ethiopian demographic and health survey, domestic violence, statistical package for social science

Procedia PDF Downloads 518
3473 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 11
3472 A Review of Spatial Analysis as a Geographic Information Management Tool

Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku

Abstract:

Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.

Keywords: aspatial technique, buffer analysis, epidemiology, interpolation

Procedia PDF Downloads 318
3471 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River

Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán

Abstract:

Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.

Keywords: microplastics, pollution, sediments, Tena River

Procedia PDF Downloads 73
3470 Decision Trees Constructing Based on K-Means Clustering Algorithm

Authors: Loai Abdallah, Malik Yousef

Abstract:

A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.

Keywords: ensemble clustering, decision trees, classification, K nearest neighbors

Procedia PDF Downloads 190
3469 Investigating the Relationship of Social Capital with Student's Aggressive Behavior: Case Study of Male Students of Middle School in Isfahan

Authors: Mohammadreza Kolaei, Vahid Ghasemi, Ebrahim Ansari

Abstract:

This research was carried out with the aim of investigating the relationship between social capital and aggressive behavior of students (Case study: male students of middle school in Isfahan). In terms of methodology, this research is an applied research which is done by descriptive-analytical method and survey method. The instrument for collecting the data was a questionnaire consisting of: questionnaire for measuring aggressive behavior and social capital questionnaire, which was used after the validity and reliability of this questionnaire. On the other hand, the statistical population of the study consisted of all students in the guidance school of Isfahan in the academic year of 2016. For determining the sample size, the Kerjesy and Morgan tables were used and the sampling method of this multi-stage random sampling was used. After collecting the data, they were analyzed by SPSS software. The findings of the research showed that at 95% confidence level, the student's social capital increases, reducing his aggressiveness. Also, the amount of student aggression is estimated at 4% according to its social capital. Also, with increasing social capital of the school, the student's student aggression is reduced, with the student's student aggression's exposure to her social capital being estimated at 3%. On the other hand, increasing the amount of mother's presence in the home decreases the amount of student aggression. Also, the amount of student aggression is estimated at 1% according to the amount of mother's presence in her home. Ultimately, the amount of student aggression decreases with increasing presence of father at home. Also, the amount of student aggression is estimated at 2% according to the variable of father's presence in his home.

Keywords: investigating, social capital, aggressive behavior, students, middle school, Isfahan

Procedia PDF Downloads 285
3468 The microbial evaluation of cow raw milk used in private dairy factories in of Zawia city, Libya

Authors: Obied A. Alwan, Elgerbi, M. Ali

Abstract:

This study was conducted on the cow milk which is used in the local milk factories of Zawia. This was completely random sampling the unscheduled samples. The microbiologic result have approved that the count of bacteria and the count of E.Coli are very high and all the manufacturing places which were included in the study have lacked the health conditions.

Keywords: raw milk, dairy factories, Libya, microbiologic

Procedia PDF Downloads 439
3467 Capacitated Multiple Allocation P-Hub Median Problem on a Cluster Based Network under Congestion

Authors: Çağrı Özgün Kibiroğlu, Zeynep Turgut

Abstract:

This paper considers a hub location problem where the network service area partitioned into predetermined zones (represented by node clusters is given) and potential hub nodes capacity levels are determined a priori as a selection criteria of hub to investigate congestion effect on network. The objective is to design hub network by determining all required hub locations in the node clusters and also allocate non-hub nodes to hubs such that the total cost including transportation cost, opening cost of hubs and penalty cost for exceed of capacity level at hubs is minimized. A mixed integer linear programming model is developed introducing additional constraints to the traditional model of capacitated multiple allocation hub location problem and empirically tested.

Keywords: hub location problem, p-hub median problem, clustering, congestion

Procedia PDF Downloads 492
3466 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
3465 Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process

Authors: Yu-Hsuan Liu, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future.

Keywords: exposure assessment, laser metal deposition process, nanoparticle, respiratory region

Procedia PDF Downloads 284
3464 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters

Authors: Shaban Guma, Naim Bajcinca

Abstract:

We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.

Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless

Procedia PDF Downloads 331
3463 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 167
3462 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators

Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean

Abstract:

In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.

Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram

Procedia PDF Downloads 431
3461 Polycyclic Aromatic Hydrocarbons: Pollution and Ecological Risk Assessment in Surface Soil of the Tezpur Town, on the North Bank of the Brahmaputra River, Assam, India

Authors: Kali Prasad Sarma, Nibedita Baul, Jinu Deka

Abstract:

In the present study, pollution level of polycyclic aromatic hydrocarbon (PAH) in surface soil of historic Tezpur town located in the north bank of the River Brahmaputra were evaluated. In order to determine the seasonal distribution and concentration level of 16 USEPA priority PAHs surface soil samples were collected from 12 different sampling sites with various land use type. The total concentrations of 16 PAHs (∑16 PAHs) varied from 242.68µgkg-1to 7901.89µgkg-1. Concentration of total probable carcinogenic PAH ranged between 7.285µgkg-1 and 479.184 µgkg-1 in different seasons. However, the concentration of BaP, the most carcinogenic PAH, was found in the range of BDL to 50.01 µgkg-1. The composition profiles of PAHs in 3 different seasons were characterized by following two different types of ring: (1) 4-ring PAHs, contributed to highest percentage of total PAHs (43.75%) (2) while in pre- and post- monsoon season 3- ring compounds dominated the PAH profile, contributing 65.58% and 74.41% respectively. A high PAHs concentration with significant seasonality and high abundance of LMWPAHs was observed in Tezpur town. Soil PAHs toxicity was evaluated taking toxic equivalency factors (TEFs), which quantify the carcinogenic potential of other PAHs relative to BaP and estimate benzo[a]pyrene-equivalent concentration (BaPeq). The calculated BaPeq value signifies considerable risk to contact with soil PAHs. We applied cluster analysis and principal component analysis (PCA) with multivariate linear regression (MLR) to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soil of Tezpur town, based on the measured PAH concentrations. The results indicate that petrogenic and pyrogenic sources are the important sources of PAHs. A combination of chemometric and molecular indices were used to identify the sources of PAHs, which could be attributed to vehicle emissions, a mixed source input, natural gas combustion, wood or biomass burning and coal combustion. Source apportionment using absolute principle component scores–multiple linear regression showed that the main sources of PAHs are 22.3% mix sources comprising of diesel and biomass combustion and petroleum spill,13.55% from vehicle emission, 9.15% from diesel and natural gas burning, 38.05% from wood and biomass burning and 16.95% contribute coal combustion. Pyrogenic input was found to dominate source of PAHs origin with more contribution from vehicular exhaust. PAHs have often been found to co-emit with other environmental pollutants like heavy metals due to similar source of origin. A positive correlation was observed between PAH with Cr and Pb (r2 = 0.54 and 0.55 respectively) in monsoon season and PAH with Cd and Pb (r2 = 0.54 and 0.61 respectively) indicating their common source. Strong correlation was observed between PAH and OC during pre- and post- monsoon (r2=0.46 and r2=0.65 respectively) whereas during monsoon season no significant correlation was observed (r2=0.24).

Keywords: polycyclic aromatic hydrocarbon, Tezpur town, chemometric analysis, ecological risk assessment, pollution

Procedia PDF Downloads 213
3460 A Psychosocial Impact of the Covid-19 Pandemic Among Frontline Workers and General Populations in Kathmandu

Authors: Nabin Prasad Joshi

Abstract:

A new variant of the coronavirus family found in the Wuhan city market of China is causing serious harm to human beings. After the WHO decided COVID-19 was a pandemic situation, everyone started to measure the prevention of infectious diseases according to WHO guidelines. It includes social distancing, isolation, quarantine, lockdown, sanitation, and masking, respectively. During this time, the researcher has observed the difficulties of cultivating the new normal in people in Nepal. People have perceived the single coronavirus differently; common populations and frontline workers have different perceptions of coronavirus. The researcher started to measure the psychosocial impact of the COVID-19 pandemic on frontline workers and general populations in Kathmandu valley. The total number of sample units for this research is 82; it includes 52 general populations and 30 frontline workers. These sample units are selected through convenient sampling and purposive sampling, respectively. This research is based on descriptive and exploratory design. DASS-21 of the Nepali version is a comprehensive data collection tool for depression, anxiety, and stress measurement in this research, and simultaneously the psychosocial checklist, key-informant interview, and case study have been done. Quantitative data are analyzed with the help of excel, and qualitative data are through thematic analysis. The study has shown that the occurrence of psychosocial issues among frontline workers is greater than in general populations. It is found that the informants with higher education status have greater psychosocial issues in comparison to low education status. In the context of a pandemic, family/friends’ support can function as a protective factor when at adequate levels.

Keywords: anxiety, depression, isolation, lockdown

Procedia PDF Downloads 77
3459 The Effect of Group Counseling on the Victimhood Perceptions of Adolescent Who Are the Subject of Peer Victimization and on Their Coping Strategies

Authors: İsmail Seçer, Taştan Seçer

Abstract:

In this study, the effect of the group counseling on the victimhood perceptions of the primary school 7th and 8th grade students who are determined to be the subject of peer victimization and their dealing way with it was analyzed. The research model is Solomon Four Group Experimental Model. In this model, there are four groups that were determined with random sampling. Two of the groups have been used as experimental group and the other two have been used as control group. Solomon model is defined as real experimental model. In real experimental models, there are multiple groups consisting of subject which have similar characteristics, and selection of the subjects is done with random sampling. For this purpose, 230 students from Kültür Kurumu Primary School in Erzurum were asked to fill Adolescent Peer Victim Form. 100 students whose victim scores were higher and who were determined to be the subject of bullying were talked face to face and informed about the current study, and they were asked if they were willing to participate or not. As a result of these interviews, 60 students were determined to participate in the experimental study and four group consisting of 15 people were created with simple random sampling method. After the groups had been formed, experimental and control group were determined with casting lots. After determining experimental and control groups, an 11-session group counseling activity which was prepared by the researcher according to the literature was applied. The purpose of applying group counseling is to change the ineffective dealing ways with bullying and their victimhood perceptions. Each session was planned to be 75 minutes and applied as planned. In the control groups, counseling activities in the primary school counseling curricula was applied for 11 weeks. As a result of the study, physical, emotional and verbal victimhood perceptions of the participants in the experimental groups were decreased significantly compared to pre-experimental situations and to those in control group. Besides, it was determined that this change observed in the victimhood perceptions of the experimental group occurred independently from the effect of variables such as gender, age and academic success. The first evidence of the study related to the dealing ways is that the scores of the participants in the experimental group related to the ineffective dealing ways such as despair and avoidance is decreased significantly compared to the pre-experimental situation and to those in control group. The second evidence related to the dealing ways is that the scores of the participants in the experimental group related to effective dealing ways such as seeking for help, consulting social support, resistance and optimism is increased significantly compared to the pre-experimental situation and to those in control group. According to the evidence obtained through the study, it can be said that group counseling is an effective approach to change the victimhood perceptions of the individuals who are the subject of bullying and their dealing strategies with it.

Keywords: bullying, perception of victimization, coping strategies, ancova analysis

Procedia PDF Downloads 391
3458 Control Law Design of a Wheeled Robot Mobile

Authors: Ghania Zidani, Said Drid, Larbi Chrifi-Alaoui, Abdeslam Benmakhlouf, Souad Chaouch

Abstract:

In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking.

Keywords: Backstepping control, kinematic and dynamic controllers, Lyapunov methods, nonlinear control systems, Wheeled Mobile Robot (WMR).

Procedia PDF Downloads 439
3457 Influence of Sports Participation on Academic Performance among Afe Babalola University Student-Athletes

Authors: B. O. Diyaolu

Abstract:

The web created by sport in academics has made it difficult for it to be separated from adolescent educational development. The enthusiasm expressed towards sport by students in higher institutions is quite enormous. Primarily, academic performance should be the pride of all students but whether sports affect the academic performance of student-athletes remain an unknown fact. This study investigated the influence of sports participation on academic performance among Afe Babalola University student-athletes. Ex post facto research design was used. Two groups of students were used for the study; Student-athlete (SA) and Regular Students (RS). Purposive sampling technique was used to select 224 student-athletes, only those that are regular in the university sports team training were considered and their records (i.e. name, department, level, matriculation number, and phone number) were collected through the assistance of their coaches. For the regular students, purposive sampling technique was used to select 224 participants, only those that have no interest in sports were considered and their records were retrieved from the college registration officer. The first and second semester examination results of the two groups were compared in 10 general study courses without their knowledge, using descriptive statistics of frequency counts, mean, and standard deviation. Out of the 10 compared courses, 7 courses result showed no significant difference between students-athlete and regular students while student-athletes perform better in 3 practically oriented courses. Sports role in academics is quite significant. Exposure to sports can help build the confidence that athletes need especially when it comes to practical courses. Student-athletes can perform better in academics if the environment is friendly and not intimidating. Lecturers and coaches need to work together in order to build a well cultured and intelligent graduate.

Keywords: academic performance, regular students, sports participation, student-athlete, university sports team

Procedia PDF Downloads 157
3456 Adaptation of Research Methodology in a Culture: A Reflection from Bangladesh

Authors: Umme Habiba Jasmine, Mzikazi Nduna

Abstract:

Due to the dearth of exploratory research in Bangladesh on parenting practices and transmission thereof, there is a lack of information on culture-sensitive methodology in studying this topic. This paper aims to share some methodological reflections from the research field, which will address this knowledge gap. Eleven dyads of biological mothers and maternal grandmothers of school-going children constituted the sample, and a female fieldworker conducted one-to-one, semi-structured, in-depth interviews with them. The participants were recruited through purposive sampling through a representative of a cooperative society in Mirpur area in Bangladesh. Four dyads of the sample outside that eleven dyads were discarded because of the unavailability of the other participant of the dyads or unsuitability for an in-depth interview. The sample recruitment strategy of approaching mothers without their known reference body had to be discarded because of existing social insecurity in Dhaka city. To meet the cultural demand of the research field the researcher had to change in the research plan and comply with the cultural tradition of mutual entertainment with food while conducting interviews which helped in engaging in positive interaction. Also, the researcher had to compromise the strict confidentiality to a collectivistic sense of confidentiality of the in-depth interview sessions. This study suggests future researchers to investigate Bangladeshi traditional practices and accommodate the applicable ones in their research plan for qualitative studies, especially the Bengali tradition of hospitality and shared confidentiality for building rapport and for proper access to the targeted information and research participants. Sample recruitment should always accompany a well-accepted reference person in the targeted research field.

Keywords: confidentiality, culture-sensitive, ethics, parenting practices, sampling

Procedia PDF Downloads 109
3455 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 278
3454 Religiosity and Involvement in Purchasing Convenience Foods: Using Two-Step Cluster Analysis to Identify Heterogenous Muslim Consumers in the UK

Authors: Aisha Ijaz

Abstract:

The paper focuses on the impact of Muslim religiosity on convenience food purchases and involvement experienced in a non-Muslim culture. There is a scarcity of research on the purchasing patterns of Muslim diaspora communities residing in risk societies, particularly in contexts where there is an increasing inclination toward industrialized food items alongside a renewed interest in the concept of natural foods. The United Kingdom serves as an appropriate setting for this study due to the increasing Muslim population in the country, paralleled by the expanding Halal Food Market. A multi-dimensional framework is proposed, testing for five forms of involvement, specifically Purchase Decision Involvement, Product Involvement, Behavioural Involvement, Intrinsic Risk and Extrinsic Risk. Quantitative cross-sectional consumer data were collected through a face-to-face survey contact method with 141 Muslims during the summer of 2020 in Liverpool located in the Northwest of England. proportion formula was utilitsed, and the population of interest was stratified by gender and age before recruitment took place through local mosques and community centers. Six input variables were used (intrinsic religiosity and involvement dimensions), dividing the sample into 4 clusters using the Two-Step Cluster Analysis procedure in SPSS. Nuanced variances were observed in the type of involvement experienced by religiosity group, which influences behaviour when purchasing convenience food. Four distinct market segments were identified: highly religious ego-involving (39.7%), less religious active (26.2%), highly religious unaware (16.3%), less religious concerned (17.7%). These segments differ significantly with respects to their involvement, behavioural variables (place of purchase and information sources used), socio-cultural (acculturation and social class), and individual characteristics. Choosing the appropriate convenience food is centrally related to the value system of highly religious ego-involving first-generation Muslims, which explains their preference for shopping at ethnic food stores. Less religious active consumers are older and highly alert in information processing to make the optimal food choice, relying heavily on product label sources. Highly religious unaware Muslims are less dietary acculturated to the UK diet and tend to rely on digital and expert advice sources. The less-religious concerned segment, who are typified by younger age and third generation, are engaged with the purchase process because they are worried about making unsuitable food choices. Research implications are outlined and potential avenues for further explorations are identified.

Keywords: consumer behaviour, consumption, convenience food, religion, muslims, UK

Procedia PDF Downloads 56
3453 Effect of Financial and Institutional Ecosystems on Startup Mergers and Acquisitions

Authors: Saurabh Ahluwalia, Sul Kassicieh

Abstract:

The conventional wisdom has maintained that being in proximity to entrepreneurial ecosystems helps startups to raise financing, develop and grow. In this paper, we examine the effect of a major component of an entrepreneurial ecosystem- financial or venture capital clusters on the exit of a startup through mergers and acquisitions (M&A). We find that the presence of a venture capitalist in a venture capital (VC) cluster is a major success factor for M&A exits. The location of startups in the top VC clusters did not turn out to be significant for success. Our results are robust to different specifications of the model that use different time periods, types of success, the reputation of VC, industry and the quality of the startup company. Our results provide evidence for VCs, startups and policymakers who want to better understand the components of entrepreneurial ecosystems and their relation to the M&A exits of startups.

Keywords: financial institution, mergers and acquisitions, startup financing, venture capital

Procedia PDF Downloads 201
3452 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 320
3451 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 535