Search results for: underground coal mining
495 Design and Development of a Computerized Medical Record System for Hospitals in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
A computerized medical record system is a collection of medical information about a person that is stored on a computer. One principal problem of most hospitals in rural areas is using the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This data mining application is to be designed using a structured system analysis and design method which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the design and implementation of a computerized medical record system. This computerized system will replace the file management system and help to quickly retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: programming, data, software development, innovation
Procedia PDF Downloads 88494 A Review on Investigating the Relations between Water Harvesting and Water Conflicts
Authors: B. Laurita
Abstract:
The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.Keywords: arid areas, governance, water conflicts, water harvesting
Procedia PDF Downloads 203493 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1
Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi
Abstract:
Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR
Procedia PDF Downloads 410492 Mining News Deserts: Impact of Local Newspaper's Closure on Political Participation and Engagement in Rural Australian Town of Lightning Ridge
Authors: Marco Magasic
Abstract:
This article examines how a local newspaper’s closure impacts the way everyday people in a rural Australian town are informed about and engage with political affairs. It draws on a two-month focused ethnographic study in the outback town of Lighting Ridge, New South Wales and explores people’s media-related practices following the closure of the towns’ only newspaper, The Ridge News, in 2015. While social media is considered to have partly filled the news void, there is an increasingly fragmented and less vibrant local public sphere that has led to growing complacency among individuals about political affairs. Local residents highlight a dearth of reliable, credible information and lament the loss of the newspaper and its role in community advocacy and fostering people’s engagement with political institutions, especially local government.Keywords: public sphere, political participation, local news, democratic deficit
Procedia PDF Downloads 156491 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis
Procedia PDF Downloads 715490 Harmonization of State Law and Local Laws in Coastal and Marine Areas Management
Authors: N. S. B. Ambarini, Tito Sofyan, Edra Satmaidi
Abstract:
Coastal and marine are two potential natural resource one of the pillars of the national economy. The Indonesian archipelago has marine and coastal which is quite spacious. Various important natural resources such as fisheries, mining and so on are in coastal areas and the sea, so that this region is a unique area with a variety of interests to exploit it. Therefore, to preserve a sustainable manner need good management and comprehensive. To the national and local level legal regulations have been published relating to the management of coastal and marine areas. However, in practice it has not been able to function optimally. Substantially has not touched the problems of the region, especially concerning the interests of local communities (local). This study is a legal non-doctrinal approach to socio-legal studies. Based on the results of research in some coastal and marine areas in Bengkulu province - Indonesia, there is a fact that the system of customary law and local wisdom began to weaken implementation. Therefore harmonization needs to be done in implementing laws and regulations that apply to the values of indigenous and local knowledge that exists in the community.Keywords: coastal and marine, harmonization, law, local
Procedia PDF Downloads 347489 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 56488 The Visualization of Hydrological and Hydraulic Models Based on the Platform of Autodesk Civil 3D
Authors: Xiyue Wang, Shaoning Yan
Abstract:
Cities in China today is faced with an increasingly serious river ecological crisis accompanying with the development of urbanization: waterlogging on account of the fragmented urban natural hydrological system; the limited ecological function of the hydrological system caused by a destruction of water system and waterfront ecological environment. Additionally, the eco-hydrological processes of rivers are affected by various environmental factors, which are more complex in the context of urban environment. Therefore, efficient hydrological monitoring and analysis tools, accurate and visual hydrological and hydraulic models are becoming more important basis for decision-makers and an important way for landscape architects to solve urban hydrological problems, formulating sustainable and forward-looking schemes. The study mainly introduces the river and flood analysis model based on the platform of Autodesk Civil 3D. Taking the Luanhe River in Qian'an City of Hebei Province as an example, the 3D models of the landform, river, embankment, shoal, pond, underground stream and other land features were initially built, with which the water transfer simulation analysis, river floodplain analysis, and river ecology analysis were carried out, ultimately the real-time visualized simulation and analysis of rivers in various hypothetical scenarios were realized. Through the establishment of digital hydrological and hydraulic model, the hydraulic data can be accurately and intuitively simulated, which provides basis for rational water system and benign urban ecological system design. Though, the hydrological and hydraulic model based on Autodesk Civil3D own its boundedness: the interaction between the model and other data and software is unfavorable; the huge amount of 3D data and the lack of basic data restrict the accuracy and application range. The hydrological and hydraulic model based on Autodesk Civil3D platform provides more possibility to access convenient and intelligent tool for urban planning and monitoring, a solid basis for further urban research and design.Keywords: visualization, hydrological and hydraulic model, Autodesk Civil 3D, urban river
Procedia PDF Downloads 297487 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm
Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian
Abstract:
The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool
Procedia PDF Downloads 440486 Message Framework for Disaster Management: An Application Model for Mines
Authors: A. Baloglu, A. Çınar
Abstract:
Different tools and technologies were implemented for Crisis Response and Management (CRM) which is generally using available network infrastructure for information exchange. Depending on type of disaster or crisis, network infrastructure could be affected and it could not be able to provide reliable connectivity. Thus any tool or technology that depends on the connectivity could not be able to fulfill its functionalities. As a solution, a new message exchange framework has been developed. Framework provides offline/online information exchange platform for CRM Information Systems (CRMIS) and it uses XML compression and packet prioritization algorithms and is based on open source web technologies. By introducing offline capabilities to the web technologies, framework will be able to perform message exchange on unreliable networks. The experiments done on the simulation environment provide promising results on low bandwidth networks (56kbps and 28.8 kbps) with up to 50% packet loss and the solution is to successfully transfer all the information on these low quality networks where the traditional 2 and 3 tier applications failed.Keywords: crisis response and management, XML messaging, web services, XML compression, mining
Procedia PDF Downloads 341485 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 416484 Diagnosis of the Hydrological and Hydrogeological Potential in the Mancomojan Basin for Estimations of Offer and Demand
Authors: J. M. Alzate, J. Baena
Abstract:
This work presents the final results of the ‘Diagnosis of the hydrological and hydrogeological potential in the Mancomojan basin for estimations of offer and demand’ with the purpose of obtaining solutions of domestic supply for the communities of the zone of study. There was realized the projection of population of the paths by three different scenes. The highest water total demand appears with the considerations of the scene 3, with a total demand for the year 2050 of 59.275 m3/year (1,88 l/s), being the path San Francisco the one that exercises a major pressure on the resource with a demand for the same year of the order of 31.189 m3/year (0,99 l/s). As for the hydrogeological potential of the zone and as alternative of supply of the studied communities, the stratigraphic columns obtained of the geophysical polls do not show strata saturated with water that could be considered to be a potential source of supply for the communities. The water registered in the geophysics tests presents very low resistances what indicates that he presents ions, this water meets in the rock interstices very thin granulometries which indicates that it is a water of constitution, and the flow of this one towards more permeable granulometries is void or limited. The underground resource that is registered so much in electrical vertical polls (SEV) as in tomography and that is saturating rocks of thin granulometry (clays and slimes), was demonstrated by content of ions, which is consistent with the abundant presence of plaster and the genesis marinades with transition to continental of the geological units in the zone. Predominant rocks are sedimentary, sandy rocks of grain I die principally, in minor proportion were observed also sandstones of thick grain to conglomerate with clastic rock of quartz, chert and siltstone of the Formation Mess and sandstones (of thin, average and thick grain) alternating with caps conglomerate whose thickness is, in general, between 5 and 15 cm, the nodules of sandstones are frequent with the same composition of the sandstones that contain them, in some cases with calcareous and crossed stratification of the formation Sincelejo Miembro Morroa.Keywords: hydrological, hydrogeological potential, geotomography, vertical electrical sounding (VES)
Procedia PDF Downloads 260483 San Francisco Public Utilities Commission Headquarters "The Greenest Urban Building in the United States"
Authors: Charu Sharma
Abstract:
San Francisco Public Utilities Commission’s Headquarters was listed in the 2013-American Institute of Architects Committee of the Environment (AIA COTE) Top Ten Green Projects. This 13-story, 277,000-square-foot building, housing more than 900 of the agency’s employees was completed in June 2012. It was designed to achieve LEED Platinum Certification and boasts a plethora of green features to significantly reduce the use of energy and water consumption, and provide a healthy office work environment with high interior air quality and natural daylight. Key sustainability features include on-site clean energy generation through renewable photovoltaic and wind sources providing $118 million in energy cost savings over 75 years; 45 percent daylight harvesting; and the consumption of 55 percent less energy and a 32 percent less electricity demand from the main power grid. It uses 60 percent less water usage than an average 13-story office building as most of that water will be recycled for non-potable uses at the site, running through a system of underground tanks and artificial wetlands that cleans and clarifies whatever is flushed down toilets or washed down drains. This is one of the first buildings in the nation with treatment of gray and black water. The building utilizes an innovative structural system with post tensioned cores that will provide the highest asset preservation for the building. In addition, the building uses a “green” concrete mixture that releases less carbon gases. As a public utility commission this building has set a good example for resource conservation-the building is expected to be cheaper to operate and maintain as time goes on and will have saved rate-payers $500 million in energy and water savings. Within the anticipated 100-year lifespan of the building, our ratepayers will save approximately $3.7 billion through the combination of rental savings, energy efficiencies, and asset ownership.Keywords: energy efficiency, sustainability, resource conservation, asset ownership, rental savings
Procedia PDF Downloads 436482 Learning about the Strengths and Weaknesses of Urban Climate Action Plans
Authors: Prince Dacosta Aboagye, Ayyoob Sharifi
Abstract:
Cities respond to climate concerns mainly through their climate action plans (CAPs). A comprehensive content analysis of the dynamics in existing urban CAPs is not well represented in the literature. This literature void presents a difficulty in appreciating the strengths and weaknesses of urban CAPs. Here, we perform a qualitative content analysis (QCA) on CAPs from 278 cities worldwide and use text-mining tools to map and visualize the relevant data. Our analysis showed a decline in the number of CAPs developed and published following the global COVID-19 lockdown period. Evidently, megacities are leading the deep decarbonisation agenda. We also observed a transition from developing mainly mitigation-focused CAPs pre-COP21 to both mitigation and adaptation CAPs. A lack of inclusiveness in local climate planning was common among European and North American cities. The evidence is a catalyst for understanding the trends in existing urban CAPs to shape future urban climate planning.Keywords: urban, climate action plans, strengths, weaknesses
Procedia PDF Downloads 98481 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 139480 Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining
Authors: Yangze Lan, Ruihua Xv, Feng Zhou, Yijia Shan, Longhao Zhang, Qinghui Xv
Abstract:
Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations.Keywords: receiving and dispatching trains, natural language processing, risk evaluation, K-means clustering
Procedia PDF Downloads 93479 A Study of Growth Factors on Sustainable Manufacturing in Small and Medium-Sized Enterprises: Case Study of Japan Manufacturing
Authors: Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi, Zefry Darmawan
Abstract:
Japan’s semiconductor industries have developed greatly in recent years. Many were started from a Small and Medium-sized Enterprises (SMEs) that found at a good circumstance and now become the prosperous industries in the world. Sustainable growth factors that support the creation of spirit value inside the Japanese company were strongly embedded through performance. Those factors were not clearly defined among each company. A series of literature research conducted to explore quantitative text mining about the definition of sustainable growth factors. Sustainable criteria were developed from previous research to verify the definition of the factors. A typical frame work was proposed as a systematical approach to develop sustainable growth factor in a specific company. Result of approach was review in certain period shows that factors influenced in sustainable growth was importance for the company to achieve the goal.Keywords: SME, manufacture, sustainable, growth factor
Procedia PDF Downloads 252478 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 197477 Indoor and Outdoor Health Risk Factors as a Result of Smoke Emission in Developing Countries: a Case of Nigeria
Authors: Beatrice Adeoye
Abstract:
Background: One of the health challenges developing countries face is air pollution from indoor and outdoor activities. Smoke as a result of cooking, burning wastes and power generators litter the air space on a continual basis due to poverty and governance challenges. The short and long term implications of these actions are enormous and studies have attributed smoke as one of the leading preventable risk factors contributing to global burden of respiratory infections. Design/Methods: The issue at hand therefore includes an exploration of the existing policy frameworks regarding smoke, adherence to international conventions and practices, and more importantly the activities of the government in addressing these issues. Aside this, an understanding of the implications of smoke on peoples’ health and well-being also become crucial. Consequently, this article seeks to interrogate the effect of smoke on the health and well-being of Nigerians and the activities of the policy makers in addressing these challenges. Results (Main Argument): This study reviewed both primary and secondary data on poverty, smoke emission and attendant health risks coupled with existing policies on smoke and air pollution in the country. For instance, over 69% of Nigerians are poor, ranking third in the world; 2.9 billion people live in homes using wood, coal or dung as their primary cooking fuel; equally, 50.6% of Nigerians has no access to regular electricity supply. Further, sustainable policy regarding smoke emission is lacking in the country. This work further submitted that continued low standard of living as a result of governance challenges coupled with a lack of sustainable policy have aggravated the health risks related to smoke in the country. Conclusions: The implication on the health of the children, mothers and vulnerable groups for the future of the country is enormous and may continue if not addressed. Urgent attention therefore needs to be focused on this area considering what this portends for the nation now and in the future.Keywords: air pollution, indoor, outdoor, respiratory infections
Procedia PDF Downloads 338476 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 183475 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 52474 Study on Safety Management of Deep Foundation Pit Construction Site Based on Building Information Modeling
Authors: Xuewei Li, Jingfeng Yuan, Jianliang Zhou
Abstract:
The 21st century has been called the century of human exploitation of underground space. Due to the characteristics of large quantity, tight schedule, low safety reserve and high uncertainty of deep foundation pit engineering, accidents frequently occur in deep foundation pit engineering, causing huge economic losses and casualties. With the successful application of information technology in the construction industry, building information modeling has become a research hotspot in the field of architectural engineering. Therefore, the application of building information modeling (BIM) and other information communication technologies (ICTs) in construction safety management is of great significance to improve the level of safety management. This research summed up the mechanism of the deep foundation pit engineering accident through the fault tree analysis to find the control factors of deep foundation pit engineering safety management, the deficiency existing in the traditional deep foundation pit construction site safety management. According to the accident cause mechanism and the specific process of deep foundation pit construction, the hazard information of deep foundation pit engineering construction site was identified, and the hazard list was obtained, including early warning information. After that, the system framework was constructed by analyzing the early warning information demand and early warning function demand of the safety management system of deep foundation pit. Finally, the safety management system of deep foundation pit construction site based on BIM through combing the database and Web-BIM technology was developed, so as to realize the three functions of real-time positioning of construction site personnel, automatic warning of entering a dangerous area, real-time monitoring of deep foundation pit structure deformation and automatic warning. This study can initially improve the current situation of safety management in the construction site of deep foundation pit. Additionally, the active control before the occurrence of deep foundation pit accidents and the whole process dynamic control in the construction process can be realized so as to prevent and control the occurrence of safety accidents in the construction of deep foundation pit engineering.Keywords: Web-BIM, safety management, deep foundation pit, construction
Procedia PDF Downloads 154473 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 434472 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 466471 Drugs, Silk Road, Bitcoins
Authors: Lali Khurtsia, Vano Tsertsvadze
Abstract:
Georgian drug policy is directed to reduce the supply of drugs. Retrospective analysis has shown that law enforcement activities have been followed by the expulsion of particular injecting drugs. The demand remains unchanged and drugs are substituted by the hand-made, even more dangerous homemade drugs entered the market. To find out expected new trends on the Georgian drug market, qualitative study was conducted with Georgian drug users to determine drug supply routes. It turned out that drug suppliers and consumers for safety reasons and to protect their anonymity, use Skype to make deals. IT in illegal drug trade is even more sophisticated in the worldwide. Trading with Bitcoins in the Darknet ensures high confidentiality of money transactions and the safe circulation of drugs. In 2014 largest Bitcoin mining enterprise in the world was built in Georgia. We argue that the use of Bitcoins and Darknet by Georgian drug consumers and suppliers will be an incentive to response adequately to the government's policy of restricting supply in order to satisfy market demand for drugs.Keywords: bitcoin, darknet, drugs, policy
Procedia PDF Downloads 441470 Impact of Trade Cooperation of BRICS Countries on Economic Growth
Authors: Svetlana Gusarova
Abstract:
The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.Keywords: BRICS countries, trade cooperation, complementarity, regression analysis
Procedia PDF Downloads 284469 Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images
Authors: Muhammad Shahzad Shifa, Amna Shifa, Muhammad Omar, Aamir Shahzad, Rahmat Ali Khan
Abstract:
Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making.Keywords: cotton, condition assessment, KNN algorithm, clustering, MSR5, vegetation indices
Procedia PDF Downloads 334468 Engineering Properties of Different Lithological Varieties of a Singapore Granite
Authors: Louis Ngai Yuen Wong, Varun Maruvanchery
Abstract:
The Bukit Timah Granite, which is a major rock formation in Singapore, encompasses different rock types such as granite, adamellite, and granodiorite with various hybrid rocks. The present study focuses on the Central Singapore Granite found in the Mandai area. Even within this small aerial extent, lithological variations with respect to the composition, texture as well as the grain size have been recognized in this igneous body. Over the years, the research effort on the Bukit Timah Granite has been focused on achieving a better understanding of its engineering properties in association with civil engineering projects. To our best understanding, a few types of research attempted to systematically investigate the influence of grain size, mineral composition, texture etc. on the strength of Bukit Timah Granite rocks in a comprehensive manner. In typical local industry practices, the different lithological varieties are not differentiated, but all are grouped under Bukit Timah Granite during core logging and the subsequent determination of engineering properties. To address such a major gap in the local engineering geological practice, a preliminary study is conducted on the variations of uniaxial compressive strength (UCS) in seven distinctly different lithological varieties found in the Bukit Timah Granite. Other physical properties including Young’s modulus, P-wave velocity and dry density determined from laboratory testing will also be discussed. The study is supplemented by a petrographical thin section examination. In addition, the specimen failure mode is classified and further correlated with the lithological varieties by carefully observing the details of crack initiation, propagation and coalescence processes in the specimens undergoing loading tests using a high-speed camera. The outcome of this research, which is the first of its type in Singapore, will have a direct implication on the sampling and design practices in the field of civil engineering and particularly underground space development in Singapore.Keywords: Bukit Timah Granite, lithological variety, thin section study, high speed video, failure mode
Procedia PDF Downloads 324467 Identification of Conserved Domains and Motifs for GRF Gene Family
Authors: Jafar Ahmadi, Nafiseh Noormohammadi, Sedegeh Fabriki Ourang
Abstract:
GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare, and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ, and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.Keywords: domain, gene family, GRF, motif
Procedia PDF Downloads 460466 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 276