Search results for: thermal and color chromic behavior of core-shell microcapsules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10477

Search results for: thermal and color chromic behavior of core-shell microcapsules

9307 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool

Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles

Abstract:

Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.

Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements

Procedia PDF Downloads 256
9306 Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties.

Keywords: ageing experiments, EUROFER, ferritic/martensitic steels, mechanical properties, microstructure, T91

Procedia PDF Downloads 261
9305 Effect of Social Media on Online Buyer Behavior

Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie

Abstract:

In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.

Keywords: social platforms, buyer behavior, consumer behavior, digital era

Procedia PDF Downloads 77
9304 The Effect of Water and Fines Content on Shear Strength of Silty Soils

Authors: Dellal Seyyid Ali

Abstract:

This work Contains an experimental study of the behavior of Chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion ...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands ...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), the water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: shear strength, sand, silt, contractanct, dilatancy, friction angle, cohesion, fines content

Procedia PDF Downloads 259
9303 Multimedia Firearms Training System

Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel

Abstract:

The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.

Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics

Procedia PDF Downloads 223
9302 The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H.Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, temperature, thickness, velocity, WC-12Co

Procedia PDF Downloads 403
9301 Using Implicit Data to Improve E-Learning Systems

Authors: Slah Alsaleh

Abstract:

In the recent years and with popularity of internet and technology, e-learning became a major part of majority of education systems. One of the advantages the e-learning systems provide is the large amount of information available about the students' behavior while communicating with the e-learning system. Such information is very rich and it can be used to improve the capability and efficiency of e-learning systems. This paper discusses how e-learning can benefit from implicit data in different ways including; creating homogeneous groups of student, evaluating students' learning, creating behavior profiles for students and identifying the students through their behaviors.

Keywords: e-learning, implicit data, user behavior, data mining

Procedia PDF Downloads 310
9300 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface

Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li

Abstract:

Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.

Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability

Procedia PDF Downloads 390
9299 Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam

Authors: Mohammad Tahmasebipour, Hosein Salarpour

Abstract:

Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories.

Keywords: microbeam, microsensor, epoxy, poisson’s ratio, dynamic behavior, static behavior, finite element method

Procedia PDF Downloads 460
9298 Logo Design of Pajamas, OTOP Product of Sainoi Community, Sainoi District, Nonthaburi Province

Authors: Witthaya Mekhum, Napasri Suwanajote, Isara Sangprasert

Abstract:

This research on logo design of pajamas, OTOP product of Sainoi community, Sainoi district, Nonthanuri Province is a participatory action research aiming to find the logo for pajamas, an OTOP product of Sainoi community. Sample of this research is 50 local residents from Sainoi community in Sainoi district, Nonthanuri Province. The questionnaire consisted of 4 main parts. Part 1: factors that influence the decisions of consumers; Part 2: characteristics of the materials used in the design; Part 3: attitude assessment and needs of consumers about logo designing to develop marketing channels; Part 4: suggestions. Interviews were conducted. For data analysis, checklist items were analyzed with frequency and percentage. Open-end items were analyzed by summarizing and using ratio scale and mean and standard deviation. The research results showed that the design, cutting and fabric affect the decision of the consumers. They want design to be decent and beautiful. Illustrations used in graphic design logos should be Lines. Fonts should be English letters and the color of the font should be the same color.

Keywords: design, logo, OTOP product, pajamas

Procedia PDF Downloads 270
9297 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites

Authors: M. Palizvan, M. T. Abadi, M. H. Sadr

Abstract:

Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.

Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE

Procedia PDF Downloads 167
9296 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 115
9295 Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry

Authors: Esra Yuksel, Dilek Duman, Levent Yeniay, Sezgin Ulukaya

Abstract:

Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring.

Keywords: isosulfan blue, pulse oximetry, SLNB, methemoglobinemia

Procedia PDF Downloads 315
9294 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 187
9293 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties

Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé

Abstract:

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.

Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode

Procedia PDF Downloads 199
9292 A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed.

Keywords: computational fluid dynamics (CFD), geothermal energy, ground-source heat pumps, phase change materials (PCM)

Procedia PDF Downloads 267
9291 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys

Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio

Abstract:

Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.

Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling

Procedia PDF Downloads 221
9290 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy

Authors: Van Tran Thi Thuy, Dukjoon Kim

Abstract:

A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.

Keywords: magnetic, nano, PNIPAM, polysuccinimide

Procedia PDF Downloads 415
9289 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots

Procedia PDF Downloads 546
9288 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings

Authors: M. Jalali Azizpour

Abstract:

In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, temperature thickness, velocity, WC-12Co

Procedia PDF Downloads 241
9287 Determining Moment-Curvature Relationship of Reinforced Concrete Rectangular Shear Walls

Authors: Gokhan Dok, Hakan Ozturk, Aydin Demir

Abstract:

The behavior of reinforced concrete (RC) members is quite important in RC structures. When evaluating the performance of structures, the nonlinear properties are defined according to the cross sectional behavior of RC members. To be able to determine the behavior of RC members, its cross sectional behavior should be known well. The moment-curvature (MC) relationship is used to represent cross sectional behavior. The MC relationship of RC cross section can be best determined both experimentally and numerically. But, experimental study on RC members is very difficult. The aim of the study is to obtain the MC relationship of RC shear walls. Additionally, it is aimed to determine the parameters which affect MC relationship. While obtaining MC relationship of RC members, XTRACT which can represent robustly the MC relationship is used. Concrete quality, longitudinal and transverse reinforcing ratios, are selected as parameters which affect MC relationship. As a result of the study, curvature ductility and effective flexural stiffness are determined using this parameter. Effective flexural stiffness is compared with the values defined in design codes.

Keywords: moment-curvature, reinforced concrete, shear wall, numerical

Procedia PDF Downloads 285
9286 Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications

Authors: Ahmed Lotfy, Andrey V. Pozdniakov, Vadim C. Zolotorevskiy

Abstract:

The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively.

Keywords: aluminum matrix composites, coefficient of thermal expansion, X-ray diffraction, squeeze casting, electron microscopy,

Procedia PDF Downloads 408
9285 Evaluation of Durability Performance for Bio-Energy Co-Product

Authors: Bo Yang, Hali̇l Ceylan, Ali Ulvi̇ Uzer

Abstract:

This experimental study was performed to investigate the effect of biofuel co-products (BCPs) with sulfur-free lignin addition on the unconsolidated on strength and durability behavior in pavement soil stabilization subjected to freezing–thawing cycles. For strength behavior, a series of unconfined compression tests were conducted. Mass losses were also calculated after freezing–thawing cycles as criteria for durability behavior. To investigate the effect of the biofuel co-products on the durability behavior of the four type’s soils, mass losses were calculated after 12 freezing–thawing cycles. The co-products tested are promising additives for improving durability under freeze-thaw conditions, and each type has specific advantages.

Keywords: durability, mass lose, freezing–thawing test, bio-energy co-product, soil stabilization

Procedia PDF Downloads 375
9284 Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft

Authors: Dineshsingh Thakur, S. Nagesh, J. Basha

Abstract:

A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability.

Keywords: flexible rotor, critical speed, experimental modal analysis, high speed flexible coupling (HSFC), misalignment

Procedia PDF Downloads 215
9283 An Exploratory Study on the Difference between Online and Offline Conformity Behavior among Chinese College Students

Authors: Xinyue Ma, Dishen Zhang, Yijun Liu, Yutian Jiang, Huiyan Yu, Chufeng Gu

Abstract:

Conformity is defined as one in a social group changing his or her behavior to match the others’ behavior in the group. It is used to find that people show a higher level of online conformity behavior than offline. However, as anonymity can decrease the level of online conformity behavior, the difference between online and offline conformity behavior among Chinese college students still needs to be tested. In this study, college students (N = 60) have been randomly assigned into three groups: control group, offline experimental group, and online experimental group. Through comparing the results of offline experimental group and online experimental group with the Mann-Whitney U test, this study verified the results of Asch’s experiment, and found out that people show a lower level of online conformity behavior than offline, which contradicted the previous finding found in China. These results can be used to explain why some people make a lot of vicious remarks and radical ideas on the Internet but perform normally in their real life: the anonymity of the network makes the online group pressure less than offline, so people are less likely to conform to social norms and public opinions on the Internet. What is more, these results support the importance and relevance of online voting, because fewer online group pressures make it easier for people to expose their true ideas, thus gathering more comprehensive and truthful views and opinions.

Keywords: anonymity, Asch’s group conformity, Chinese college students, online conformity

Procedia PDF Downloads 152
9282 Juvenile Delinquency of Senior High School Students in Surabaya, Indonesia

Authors: Herdina Indrijati

Abstract:

This research aims to describe teenager delinquency behavior (Juvenile Delinquency) of senior high school students in Surabaya, Indonesia. Juvenile Delinquency is a broad range of behaviors start from socially unacceptable behavior (overreact in school), violation (escape from home) to crimes (like stealing). This research uses quantitative descriptive method using 498 students who come from 8 different schools in Surabaya as subjects. Juvenile Delinquency behavior form questionnaire has been completed by subjects and was used to measure and describe the behavior. The result of this research is presented in statistic descriptive forms. Result shows that 169 subjects skip school, 55 subjects get out of home without parent’s permission, 110 subjects engage in smoking behavior, 74 subjects damage other people properties, 32 subjects steal, 16 subjects exploit others and 7 subjects engage in drug abuse. Frequency of the top five mentioned behavior are 1-10 times. It is also found that subject’s peers are most likely to be the victim of Juvenile Delinquency. The reasons teenagers engage in Juvenile Delinquency include (1) feeling tired, bored or lazy – that contributes to their skip school behavior (2) Having a lot of problem with parents - contrives them to run away from home, (3) accidentally damage other people’s properties, (4) financial problems – force them to steal and exploit, (5) feeling like having a lot of life problems – that makes them do drugs (6) trying smoking for experience.

Keywords: juvenile delinquency, senior high school, student

Procedia PDF Downloads 225
9281 The Effect of Motivational Postures as a Concomitant Factor and Peer Reporting Behavior on Taxpayer Compliance Decisions

Authors: Elen Puspitasari, Yeye Susilowati, Wahyu Meiranto

Abstract:

This study uses an experiment to examine the effect of motivational postures and peer’s reporting behavior on taxpayer compliance decisions. The motivational postures of taxpayers placed as a concomitant variable. Taxpayers were randomly assigned to alternate peer reporting behavior as an experimental variable with two level treatments and then responded to tax reporting scenarios. A motivational posture was measured with 29 statements developed by Braithwaite. Therefore, this experimental research uses Quasi-Experimental Design Between-Subject with Covariate with random assignment method. The subject in this experiment is the taxpayers who has a tax ID and have experience in reporting their tax revenue. The most important is that they earn income from their own business. The analysis technique used was Analysis of Covariate. The results showed that the posture of motivation as concomitant factors does not affect tax compliance decisions. Furthermore, this study proves that peer reporting behavior will determine the decisions of tax compliance. The findings in this study are intended to provide some practical implications for improving tax compliance.

Keywords: motivational postures, concomitant, tax compliance decisions, peer reporting behavior

Procedia PDF Downloads 274
9280 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsića, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum

Abstract:

Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: polycaprolactone, titanium dioxide, thermal properties, morphology

Procedia PDF Downloads 362
9279 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 642
9278 Hydro-Mechanical Behavior of Calcareous Soils in Arid Region

Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat

Abstract:

This paper presents the study of hydro mechanical behavior of this optimal mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction

Procedia PDF Downloads 507