Search results for: representation of graph models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8183

Search results for: representation of graph models

7013 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles

Authors: Siamack A. Shirazi, Farzin Darihaki

Abstract:

Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.

Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid

Procedia PDF Downloads 169
7012 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default

Procedia PDF Downloads 456
7011 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 103
7010 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun

Abstract:

A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 462
7009 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models

Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows

Abstract:

Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.

Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis

Procedia PDF Downloads 158
7008 ‘Non-Legitimate’ Voices as L2 Models: Towards Becoming a Legitimate L2 Speaker

Authors: M. Rilliard

Abstract:

Based on a Multiliteracies-inspired and sociolinguistically-informed advanced French composition class, this study employed autobiographical narratives from speakers traditionally considered non-legitimate models for L2 teaching purposes of inspiring students to develop an authentic L2 voice and to see themselves as legitimate L2 speakers. Students explored their L2 identities in French through a self-inspired fictional character. Two autobiographical narratives of identity quest by non-traditional French speakers provided them guidance through this process: the novel Le Bleu des Abeilles (2013) and the film Qu’Allah Bénisse la France (2014). Written and French oral productions for different genres, as well as metalinguistic reflections in English, were collected and analyzed. Results indicate that ideas and materials that were relatable to students, namely relatable experiences and relatable language, were most useful to them in developing their L2 voices and achieving authentic and legitimate L2 speakership. These results point towards the benefits of using non-traditional speakers as pedagogical models, as they serve to legitimize students’ sense of their own L2-speakership, which ultimately leads them towards a better, more informed, mastery of the language.

Keywords: foreign language classroom, L2 identity, L2 learning and teaching, L2 writing, sociolinguistics

Procedia PDF Downloads 133
7007 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 77
7006 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia PDF Downloads 182
7005 On Hyperbolic Gompertz Growth Model (HGGM)

Authors: S. O. Oyamakin, A. U. Chukwu,

Abstract:

We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz

Procedia PDF Downloads 443
7004 Modelling Volatility of Cryptocurrencies: Evidence from GARCH Family of Models with Skewed Error Innovation Distributions

Authors: Timothy Kayode Samson, Adedoyin Isola Lawal

Abstract:

The past five years have shown a sharp increase in public interest in the crypto market, with its market capitalization growing from $100 billion in June 2017 to $2158.42 billion on April 5, 2022. Despite the outrageous nature of the volatility of cryptocurrencies, the use of skewed error innovation distributions in modelling the volatility behaviour of these digital currencies has not been given much research attention. Hence, this study models the volatility of 5 largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Tether, Binance coin, and USD Coin) using four variants of GARCH models (GJR-GARCH, sGARCH, EGARCH, and APARCH) estimated using three skewed error innovation distributions (skewed normal, skewed student- t and skewed generalized error innovation distributions). Daily closing prices of these currencies were obtained from Yahoo Finance website. Finding reveals that the Binance coin reported higher mean returns compared to other digital currencies, while the skewness indicates that the Binance coin, Tether, and USD coin increased more than they decreased in values within the period of study. For both Bitcoin and Ethereum, negative skewness was obtained, meaning that within the period of study, the returns of these currencies decreased more than they increased in value. Returns from these cryptocurrencies were found to be stationary but not normality distributed with evidence of the ARCH effect. The skewness parameters in all best forecasting models were all significant (p<.05), justifying of use of skewed error innovation distributions with a fatter tail than normal, Student-t, and generalized error innovation distributions. For Binance coin, EGARCH-sstd outperformed other volatility models, while for Bitcoin, Ethereum, Tether, and USD coin, the best forecasting models were EGARCH-sstd, APARCH-sstd, EGARCH-sged, and GJR-GARCH-sstd, respectively. This suggests the superiority of skewed Student t- distribution and skewed generalized error distribution over the skewed normal distribution.

Keywords: skewed generalized error distribution, skewed normal distribution, skewed student t- distribution, APARCH, EGARCH, sGARCH, GJR-GARCH

Procedia PDF Downloads 121
7003 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
7002 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA

Procedia PDF Downloads 136
7001 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame

Procedia PDF Downloads 278
7000 Effect of Soil Corrosion in Failures of Buried Gas Pipelines

Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur

Abstract:

In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.

Keywords: corrosion, pit depth, sensitivity analysis, exposure period

Procedia PDF Downloads 530
6999 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 234
6998 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge

Authors: Yulan Wu

Abstract:

The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 75
6997 The Temporal Implications of Spatial Prospects

Authors: Zhuo Job Chen, Kevin Nute

Abstract:

The work reported examines potential linkages between spatial and temporal prospects, and more specifically, between variations in the spatial depth and foreground obstruction of window views, and observers’ sense of connection to the future. It was found that external views from indoor spaces were strongly associated with a sense of the future, that partially obstructing such a view with foreground objects significantly reduced its association with the future, and replacing it with a pictorial representation of the same scene (with no real actual depth) removed most of its temporal association. A lesser change in the spatial depth of the view, however, had no apparent effect on association with the future. While the role of spatial depth has still to be confirmed, the results suggest that spatial prospects directly affect temporal ones. The word “prospect” typifies the overlapping of the spatial and temporal in most human languages. It originated in classical times as a purely spatial term, but in the 16th century took on the additional temporal implication of an imagined view ahead, of the future. The psychological notion of prospection, then, has its distant origins in a spatial analogue. While it is not yet proven that space directly structures our processing of time at a physiological level, it is generally agreed that it commonly does so conceptually. The mental representation of possible futures has been a central part of human survival as a species (Boyer, 2008; Suddendorf & Corballis, 2007). A sense of the future seems critical not only practically, but also psychologically. It has been suggested, for example, that lack of a positive image of the future may be an important contributing cause of depression (Beck, 1974; Seligman, 2016). Most people in the developed world now spend more than 90% of their lives indoors. So any direct link between external views and temporal prospects could have important implications for both human well-being and building design. We found that the ability to see what lies in front of us spatially was strongly associated with a sense of what lies ahead temporally. Partial obstruction of a view was found to significantly reduce that sense connection to the future. Replacing a view with a flat pictorial representation of the same scene removed almost all of its connection with the future, but changing the spatial depth of a real view appeared to have no significant effect. While foreground obstructions were found to reduce subjects’ sense of connection to the future, they increased their sense of refuge and security. Consistent with Prospect and Refuge theory, an ideal environment, then, would seem to be one in which we can “see without being seen” (Lorenz, 1952), specifically one that conceals us frontally from others, without restricting our own view. It is suggested that these optimal conditions might be translated architecturally as screens, the apertures of which are large enough for a building occupant to see through unobstructed from close by, but small enough to conceal them from the view of someone looking from a distance outside.

Keywords: foreground obstructions, prospection, spatial depth, window views

Procedia PDF Downloads 126
6996 Assessment of Sex Differences in Serum Urea and Creatinine Level in Response to Spinal Cord Injury Using Albino Rat Models

Authors: Waziri B. I., Elkhashab M. M.

Abstract:

Background: One of the most serious consequences of spinal cord injury (SCI) is progressive deterioration of renal function mostly as a result of urine stasis and ascending infection of the paralyzed bladder. This necessitates for investigation of early changes in serum urea and creatinine and associated sex related differences in response to SCI. Methods: A total of 24 adult albino rats weighing above 150g were divided equally into two groups, a control and experimental group (n = 12) each containing an equal number of male and female rats. The experimental group animals were paralyzed by complete transection of spinal cord below T4 level after deep anesthesia with ketamine 75mg/kg. Blood samples were collected from both groups five days post SCI for analysis. Mean values of serum urea (mmol/L) and creatinine (µmol/L) for both groups were compared. P < 0.05 was considered as significant. Results: The results showed significantly higher levels (P < 0.05) of serum urea and creatinine in the male SCI models with mean values of 92.12 ± 0.98 and 2573 ± 70.97 respectively compared with their controls where the mean values for serum urea and creatinine were 6.31 ± 1.48 and 476. 95 ± 4.67 respectively. In the female SCI models, serum urea 13.11 ± 0.81 and creatinine 519.88 ± 31.13 were not significantly different from that of female controls with serum urea and creatinine levels of 11.71 ± 1.43 and 493.69 ± 17.10 respectively (P > 0.05). Conclusion: Spinal cord injury caused a significant increase in serum Urea and Creatinine levels in the male models compared to the females. This indicated that males might have higher risk of renal dysfunction following SCI.

Keywords: albino rats, creatinine, spinal cord injury (SCI), urea

Procedia PDF Downloads 141
6995 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults

Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter

Abstract:

Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.

Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization

Procedia PDF Downloads 144
6994 Investigating Knowledge Management in Financial Organisation: Proposing a New Model for Implementing Knowledge Management

Authors: Ziba R. Tehrani, Sanaz Moayer

Abstract:

In the age of the knowledge-based economy, knowledge management has become a key factor in sustainable competitive advantage. Knowledge management is discovering, acquiring, developing, sharing, maintaining, evaluating, and using right knowledge in right time by right person in organization; which is accomplished by creating a right link between human resources, information technology, and appropriate structure, to achieve organisational goals. Studying knowledge management financial institutes shows the knowledge management in banking system is not different from other industries but because of complexity of bank’s environment, the implementation is more difficult. The bank managers found out that implementation of knowledge management will bring many advantages to financial institutes, one of the most important of which is reduction of threat to lose subsequent information of personnel job quit. Also Special attention to internal conditions and environment of the financial institutes and avoidance from copy-making in designing the knowledge management is a critical issue. In this paper, it is tried first to define knowledge management concept and introduce existing models of knowledge management; then some of the most important models which have more similarities with other models will be reviewed. In second step according to bank requirements with focus on knowledge management approach, most major objectives of knowledge management are identified. For gathering data in this stage face to face interview is used. Thirdly these specified objectives are analysed with the response of distribution of questionnaire which is gained through managers and expert staffs of ‘Karafarin Bank’. Finally based on analysed data, some features of exiting models are selected and a new conceptual model will be proposed.

Keywords: knowledge management, financial institute, knowledge management model, organisational knowledge

Procedia PDF Downloads 361
6993 Cross-Dialect Sentence Transformation: A Comparative Analysis of Language Models for Adapting Sentences to British English

Authors: Shashwat Mookherjee, Shruti Dutta

Abstract:

This study explores linguistic distinctions among American, Indian, and Irish English dialects and assesses various Language Models (LLMs) in their ability to generate British English translations from these dialects. Using cosine similarity analysis, the study measures the linguistic proximity between original British English translations and those produced by LLMs for each dialect. The findings reveal that Indian and Irish English translations maintain notably high similarity scores, suggesting strong linguistic alignment with British English. In contrast, American English exhibits slightly lower similarity, reflecting its distinct linguistic traits. Additionally, the choice of LLM significantly impacts translation quality, with Llama-2-70b consistently demonstrating superior performance. The study underscores the importance of selecting the right model for dialect translation, emphasizing the role of linguistic expertise and contextual understanding in achieving accurate translations.

Keywords: cross-dialect translation, language models, linguistic similarity, multilingual NLP

Procedia PDF Downloads 77
6992 (Re)Framing the Muslim Subject: Studying the Artistic Representation of Guantanamo and Abu Ghraib Detainees

Authors: Iqra Raza

Abstract:

This paper attempts to conceptualize the (de)humanization of the Muslim subject in Karen J. Greenberg and Janet Hamlin’s transmedia Sketching Guantanamo through a close study of the aesthetics and semiotics of the text. The Muslim experience, the paper shall argue, is mediated through a (de)humanization confined and incarcerated within the chains of artistic representation. Hamlin’s reliance on the distortions offered by stereotypes is reminiscent of the late Victorian epistemology on criminality, as evidenced most starkly in the sketch of Khalid Sheikh Mohammad. The position of the white artist thus becomes suspect in the enterprise of neo-Victorian ethnography. The visual stories of movement from within Guantanamo become potent; the paper shall argue, especially in juxtaposition with the images of stillness that came out from the detention centers, which portrayed the enactment of violence on individual bodies with a deliberate erasure of faces. So, while art becomes a way for reclaiming subjectivity or humanizing these identifiable bodies, the medium predicates itself on their objectification. The paper shall explore various questions about what it means for the (criminal?) subjects to be rendered into art rather than being photographed. Does art entail a necessary departure from the assumed objectivity of the photographic images? What makes art the preferred medium for (de)humanization of the violated Muslim bodies? What happens when art is produced without a recognition of the ‘precariousness’ of the life being portrayed? Rendering the detainees into art becomes a slippery task complicated by Hamlin’s privileged position outside the glass walls of the court. The paper shall adjourn analysis at the many dichotomies that exist in the text viz. between the White men and the brown, the Muslims and the Christians, Occident and the Orient problematized by Hamlin’s politics, that of a ‘neutral outsider’ which quickly turns on its head and becomes complicity in her deliberate erasure of the violence that shaped and still shapes Guantanamo.

Keywords: Abu Ghraib, Derrida, Guantanamo, graphic journalism, Muslimness, orient, spectrality

Procedia PDF Downloads 156
6991 Passivization: as Syntactic Argument Decreasing Parameter in Boro

Authors: Ganga Brahma

Abstract:

Boro employs verbs hooked up with morphemes which lead verbs to adjust with their arguments and hence, affecting the whole of sentence structures. This paper is based on few such syntactic parameters which are usually considered as argument decreasing parameters in linguistic works. Passivizing of few transitive clauses which are usually construed from the verbs occurring with certain morphemes and representation in middle constructions are few of such strategies which lead to conceptualizing of decreasing of syntactic arguments from a sentence. This paper focuses on the mentioned linguistic strategies and attempts to describe the linguistic processes as for how these parameters work in languages especially by concentrating on a particular Tibeto-Burman language i.e. Boro. Boro is a Tibeto-Burman language widely spoken in parts of the north-eastern regions of India. It has an agglutinative nature in forming words as well as clauses. There is a morpheme ‘za’ which means ‘to happen, become’ in Boro whose appearances with verb roots denotes an idea of the subject being passivized. Passivization, usually has notions that it is a reversed representation of its active sentence forms in the terms of argument placements. (However, it is not accountably true as passives and actives have some distinct features of their own and independent of one and the other.) This particular work will concentrate on the semantics of passivization at the same time along with its syntactic reality. The verb khɑo meaning ‘to steal’ offers a sense of passivization with the appearance of the morpheme zɑ which means ‘to happen, become’ (e.g Zunu-ɑ lama-ɑo phɯisɑ khɑo-zɑ-bɑi; Junu-NOM road-LOC money steal-PASS-PRES: Junu got her money stolen on the road). The focus, here, is more on the argument placed at the subject position (i.e. Zunu) and the event taken place. The semantics of such construction asks for the agent because without an agent the event could not have taken place. However, the syntactic elements fill the slots of relegated or temporarily deleted agent which, infact, is the actual subject cum agent in its active representation. Due to the event marker ‘zɑ’ in this presentation it affords to reduce one participant from such a situation which in actual is made up of three participants. Hence, the structure of di-transitive construction here reduces to mono-transitive structure. Unlike passivization, middle construction does not allow relegation of the agents. It permanently deletes agents. However, it also focuses on the fore-grounded subject and highlighting on the changed states on the subjects which happens to be the underlying objects of their respective transitive structures (with agents). This work intends to describe how these two parameters which are different at their semantic realization can meet together at a syntactic level in order to create a linguistic parameter that decreases participants from their actual structures which are with more than one participant.

Keywords: argument-decrease, middle-construction, passivization, transitivity-intransitivity

Procedia PDF Downloads 237
6990 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria

Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi

Abstract:

In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.

Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters

Procedia PDF Downloads 503
6989 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria

Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero

Abstract:

Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.

Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria

Procedia PDF Downloads 336
6988 Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes

Authors: Abdollah Ghasempour, Mohammad Reza Kavianpour, Majid Galoie

Abstract:

This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results.

Keywords: nappe flow, energy dissipation, stepped chute, dimensional analysis

Procedia PDF Downloads 362
6987 A Reduced Distributed Sate Space for Modular Petri Nets

Authors: Sawsen Khlifa, Chiheb AMeur Abid, Belhassan Zouari

Abstract:

Modular verification approaches have been widely attempted to cope with the well known state explosion problem. This paper deals with the modular verification of modular Petri nets. We propose a reduced version for the modular state space of a given modular Petri net. The new structure allows the creation of smaller modular graphs. Each one draws the behavior of the corresponding module and outlines some global information. Hence, this version helps to overcome the explosion problem and to use less memory space. In this condensed structure, the verification of some generic properties concerning one module is limited to the exploration of its associated graph.

Keywords: distributed systems, modular verification, petri nets, state space explosition

Procedia PDF Downloads 117
6986 Between Fiction and Reality: Reading the Silences in Partition History

Authors: Shazia Salam

Abstract:

This paper focuses on studying the literary reactions of selected Muslim women writers to the event of Partition of India in the north western region. It aims to explore how Muslim women experienced the Partition and how that experience was articulated through their writing. There is a serious dearth of research on the experience of Muslim women who had to witness the momentous event of the subcontinent. Since scholars have often questioned the silence around the historiography related to the experiences of Muslim women, this paper aims to explore if literature could provide insights that may be less readily available in other modes of narration. Using literature as an archival source, it aims to delve into the arenas of history that have been cloistered and closed. Muslim women have been silent about their experiences of Partition which at the cost of essentializing could be attributed to patriarchal constraints, and taboos, on speaking of intimate matters. These silences have consigned the question of their experience to a realm of anonymity. The lack of ethnographic research has in a way been compensated in the realm of literature, mainly poetry and fiction. Besides reportage, literature remains an important source of social history about Partition and how Muslim women lived through it. Where traditional history fails to record moments of rupture and dislocation, literature serves the crucial purpose. The central premise in this paper is that there is a need to revise the history of partition owing to the gaps in historiography. It looks into if literature can serve as a ground for developing new approaches to history since the question of the representation always confronts us--between what a text represents and how it represents it since imagination of the writer plays a great role in the construction of any text. With this approach as an entry point, this paper aims to unpack the questions of representation, the coalescing of history /literature and the gendered nature of partition history. It concludes that the gaps in the narratives of Partition and the memory of Partition can be addressed by way of suing literary as a source to fill in the cracks and fissures.

Keywords: gender, history, literature, partition

Procedia PDF Downloads 213
6985 Model Driven Architecture Methodologies: A Review

Authors: Arslan Murtaza

Abstract:

Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.

Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies

Procedia PDF Downloads 459
6984 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait

Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh

Abstract:

In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.

Keywords: innovative methods in transportation data collection, integrated public transportation system, traffic forecasts, transportation modeling, travel behavior

Procedia PDF Downloads 223