Search results for: financial market prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7747

Search results for: financial market prediction

6577 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
6576 Cybersecurity Challenges in the Era of Open Banking

Authors: Krish Batra

Abstract:

The advent of open banking has revolutionized the financial services industry by fostering innovation, enhancing customer experience, and promoting competition. However, this paradigm shift towards more open and interconnected banking ecosystems has introduced complex cybersecurity challenges. This research paper delves into the multifaceted cybersecurity landscape of open banking, highlighting the vulnerabilities and threats inherent in sharing financial data across a network of banks and third-party providers. Through a detailed analysis of recent data breaches, phishing attacks, and other cyber incidents, the paper assesses the current state of cybersecurity within the open banking framework. It examines the effectiveness of existing security measures, such as encryption, API security protocols, and authentication mechanisms, in protecting sensitive financial information. Furthermore, the paper explores the regulatory response to these challenges, including the implementation of standards such as PSD2 in Europe and similar initiatives globally. By identifying gaps in current cybersecurity practices, the research aims to propose a set of robust, forward-looking strategies that can enhance the security and resilience of open banking systems. This includes recommendations for banks, third-party providers, regulators, and consumers on how to mitigate risks and ensure a secure open banking environment. The ultimate goal is to provide stakeholders with a comprehensive understanding of the cybersecurity implications of open banking and to outline actionable steps for safeguarding the financial ecosystem in an increasingly interconnected world.

Keywords: open banking, financial services industry, cybersecurity challenges, data breaches, phishing attacks, encryption, API security protocols, authentication mechanisms, regulatory response, PSD2, cybersecurity practices

Procedia PDF Downloads 60
6575 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure

Authors: Nico Rosamilia

Abstract:

The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).

Keywords: ESG ratings, non-financial information, value of firms, sustainable finance

Procedia PDF Downloads 83
6574 Portfolio Restructuring of Banks: The Impact on Performance and Risk

Authors: Hannes Koester

Abstract:

Driven by difficult market conditions and increasing regulations, many banks are making the strategic decision to restructure their portfolio by divesting several business segments. Using a unique dataset of 727 portfolio restructuring announcements by 161 international listed banks over the period 1999 to 2015, we investigate the impact of restructuring measurements on the stock performance as well as on the banks’ profitability and risk. Employing the event study methodology, we detect positive stock market reactions on the announcement of restructuring measurements. These positive stock market reactions indicate that shareholders reward banks’ specialization activities. However, the results of the system GMM regressions show a negative relation between restructuring measurements and banks’ return on assets and a positive relation towards the individual and systemic risk of banks. These empirical results indicate that there is no guarantee that portfolio restructurings will result in a more profitable and less risky institution.

Keywords: bank performance, bank risk, divestiture, restructuring, systemic risk

Procedia PDF Downloads 317
6573 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
6572 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 93
6571 An Association between Stock Index and Macro Economic Variables in Bangladesh

Authors: Shamil Mardi Al Islam, Zaima Ahmed

Abstract:

The aim of this article is to explore whether certain macroeconomic variables such as industrial index, inflation, broad money, exchange rate and deposit rate as a proxy for interest rate are interlinked with Dhaka stock price index (DSEX index) precisely after the introduction of new index by Dhaka Stock Exchange (DSE) since January 2013. Bangladesh stock market has experienced rapid growth since its inception. It might not be a very well-developed capital market as compared to its neighboring counterparts but has been a strong avenue for investment and resource mobilization. The data set considered consists of monthly observations, for a period of four years from January 2013 to June 2018. Findings from cointegration analysis suggest that DSEX and macroeconomic variables have a significant long-run relationship. VAR decomposition based on VAR estimated indicates that money supply explains a significant portion of variation of stock index whereas, inflation is found to have the least impact. Impact of industrial index is found to have a low impact compared to the exchange rate and deposit rate. Policies should there aim to increase industrial production in order to enhance stock market performance. Further reasonable money supply should be ensured by authorities to stimulate stock market performance.

Keywords: deposit rate, DSEX, industrial index, VAR

Procedia PDF Downloads 161
6570 Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products' Market

Authors: Zuk Nechemia Turbovich

Abstract:

This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases.

Keywords: lifecycle, mass-customization, personal 3d-printing, user involvement

Procedia PDF Downloads 183
6569 The Impact of HRM Practices and Brand Performance on Financial Institution Performance: An Empirical Study

Authors: M. Khasro Miah, Chowdhury Hossan Golam, Muhammed Siddique Hossain

Abstract:

Recently, financial institution brand image is turning out to be pretty weak due to the presence of strong local competitors and this in term is affecting their firm performance also. In this study, four major HR practices, namely employee commitment, empowerment, loyalty, and engagement are considered in order to measure its effects on the brand and financial performance of banking organization. This study finds that the banking institutions of Bangladesh are more customer oriented rather than internal employee oriented, which makes it quite obvious that the internal HR practices will have little or no effect on the banks brand performance. Employee Commitment has emerged out to be the most important predictor, followed by employee loyalty and empowerment. The employees are well-empowered, engaged, and shows loyalty towards the organization, but their activities are not well linked with the brand. Firms should concentrate to create a congenial working atmosphere and employees should feel like a part of the organization.

Keywords: HR in bank, employee commitment, empowerment, finance, employee commitment, loyalty and engagement

Procedia PDF Downloads 482
6568 Urgency of Islamic Economic System Implementation in Indonesian Banking

Authors: Muhammad Rifqi Hafizhudin Arif, Mukhamad Zulfal Faradis, Ahmad Hidayatullah

Abstract:

Indonesia is the country that uses conventional financial system adopted from European countries as a form of finance in the national banking system. Many of the derivative products of conventional banks either investment, buy and sell, saving and loan, which is not in accordance with Islamic Ethics. While the majority population in Indonesia are belief in Islam, which Islam has had financial management guide is written in the Quran, the Hadith, as well as the opinions of experts who strongly prohibits the use of interest in each transaction activities. Many different expert opinions on the application of the Islamic financial system in Indonesia. However, as the majority of the population of Indonesia, Islamic community have not been able to get the opportunities to choose the Islamic financial system that has mutual benefit between consumers and banks, particularly fairness in transactions, ethical investment, uphold the values of solidarity and brotherhood in every transaction activities, and avoid speculation. In this paper, we will discuss the reasons for the importance of providing an option for Islamic community as the majority of the population of Indonesia to use the banking system which adopted the Islamic ethical values that have been much discussed by other researchers in various countries. The existence of this research is expected to Government, academia and the general public aware of the urgency of Islamic economic system implementation in Indonesian banking as the solution and justice especially for the Islamic community to use the values which they held.

Keywords: Islamic economic system, conventional system, Islamic value, banking

Procedia PDF Downloads 364
6567 Transmission Network Expansion Planning in Deregulated Power Systems to Facilitate Competition under Uncertainties

Authors: Hooshang Mohammad Alikhani, Javad Nikoukar

Abstract:

Restructuring and deregulation of power industry have changed the objectives of transmission expansion planning and increased the uncertainties. Due to these changes, new approaches and criteria are needed for transmission planning in deregulated power systems. The objective of this research work is to present a new approach for transmission expansion planning with considering new objectives and uncertainties in deregulated power systems. The approach must take into account the desires of all stakeholders in transmission expansion planning. Market based criteria must be defined to achieve the new objectives. Combination of market based criteria, technical criteria and economical criteria must be used for measuring the goodness of expansion plans to achieve market requirements, technical requirements, and economical requirements altogether.

Keywords: deregulated power systems, transmission network, stakeholder, energy systems

Procedia PDF Downloads 654
6566 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
6565 Specialised Financial Institutions and its Role in the Promotion of Small and Medium Enterprises in Kerala, India

Authors: K. V. Venugopalan

Abstract:

Micro, Small and Medium Enterprises (MSMEs) have been accepted as the engine of economic growth and for promoting equitable development. The major advantage of the sector is its employment potential at low capital cost. The labour intensity of the MSME sector is much higher than that of the large enterprises. The MSMEs constitute over 90% of total enterprises in most of the economies and are credited with generating the highest rates of employment growth and account for a major share of industrial production and exports. Kerala is a small state in India with the limited land area with high potential in educated human resources need micro, small and medium enterprises for development. Kerala has the highest Physical Quality of Life Index (PQLI) in India and the highest Human Development Index (HDI) at par with the developed countries SME play an important role in alleviating poverty and contribute significantly towards the growth of developing economies. Financial institutions can play a vital role for the promotion of micro, small and medium enterprises in Kerala. The study entitled “Financial Institutions and its role in the promotion of Small and Medium Enterprises in Kerala “examine the progress of MSME in Kerala and India and also the role of financial institutions and the problems faced by entrepreneurs for getting advances with reference to ‘Kerala Financial Corporation’-an agency set up by the government for promoting small and medium enterprises in the state. This study is based on both secondary and primary data. Primary data for the study was collected from those entrepreneurs who availed advances from financial institutions. The secondary data include the investment made, goods and services provided, the employment generated and the number of units registered in MSME sector for the last 10 years in Kerala. The study concluded that financial institutions providing finance with simple procedures and charging smaller interest rates will increase the number of MSME's and also contribute gross state domestic product and reduce the unemployment problem and poverty in the economy.

Keywords: gross state domestic product, human development index, micro, small and medium enterprises

Procedia PDF Downloads 410
6564 Prediction of Compressive Strength in Geopolymer Composites by Adaptive Neuro Fuzzy Inference System

Authors: Mehrzad Mohabbi Yadollahi, Ramazan Demirboğa, Majid Atashafrazeh

Abstract:

Geopolymers are highly complex materials which involve many variables which makes modeling its properties very difficult. There is no systematic approach in mix design for Geopolymers. Since the amounts of silica modulus, Na2O content, w/b ratios and curing time have a great influence on the compressive strength an ANFIS (Adaptive neuro fuzzy inference system) method has been established for predicting compressive strength of ground pumice based Geopolymers and the possibilities of ANFIS for predicting the compressive strength has been studied. Consequently, ANFIS can be used for geopolymer compressive strength prediction with acceptable accuracy.

Keywords: geopolymer, ANFIS, compressive strength, mix design

Procedia PDF Downloads 853
6563 Impact of National Institutions on Corporate Social Performance

Authors: Debdatta Mukherjee, Abhiman Das, Amit Garg

Abstract:

In recent years, there is a growing interest about corporate social responsibility of firms in both academic literature and business world. Since business forms a part of society incorporating socio-environment concerns into its value chain, activities are vital for ensuring mutual sustainability and prosperity. But, until now most of the works have been either descriptive or normative rather than positivist in tone. Even the few ones with a positivist approach have mostly studied the link between corporate financial performance and corporate social performance. However, these studies have been severely criticized by many eminent authors on grounds that they lack a theoretical basis for their findings. They have also argued that apart from corporate financial performance, there must be certain other crucial influences that are likely to determine corporate social performance of firms. In fact, several studies have indicated that firms operating in distinct national institutions show significant variations in the corporate social responsibility practices that they undertake. This clearly suggests that the institutional context of a country in which the firms operate is a key determinant of corporate social performance of firms. Therefore, this paper uses an institutional framework to understand why corporate social performance of firms vary across countries. It examines the impact of country level institutions on corporate social performance using a sample of 3240 global publicly-held firms across 33 countries covering the period 2010-2015. The country level institutions include public institutions, private institutions, markets and capacity to innovate. Econometric Analysis has been mainly used to assess this impact. A three way panel data analysis using fixed effects has been used to test and validate appropriate hypotheses. Most of the empirical findings confirm our hypotheses and the economic significance indicates the specific impact of each variable and their importance relative to others. The results suggest that institutional determinants like ethical behavior of private institutions, goods market, labor market and innovation capacity of a country are significantly related to the corporate social performance of firms. Based on our findings, few implications for policy makers from across the world have also been suggested. The institutions in a country should promote competition. The government should use policy levers for upgrading home demands, like setting challenging yet flexible safety, quality and environment standards, and framing policies governing buyer information, providing innovative recourses to low quality goods and services and promoting early adoption of new and technologically advanced products. Moreover, the institution building in a country should be such that they facilitate and improve the capacity of firms to innovate. Therefore, the proposed study argues that country level institutions impact corporate social performance of firms, empirically validates the same, suggest policy implications and attempts to contribute to an extended understanding of corporate social responsibility and corporate social performance in a multinational context.

Keywords: corporate social performance, corporate social responsibility, institutions, markets

Procedia PDF Downloads 166
6562 Prediction of Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 337
6561 Turin, from Factory City to Talents Power Player: The Role of Private Philanthropy Agents of Innovation in the Revolution of Human Capital Market in the Contemporary Socio-Urban Scenario

Authors: Renato Roda

Abstract:

With the emergence of the so-called 'Knowledge Society', the implementation of policies to attract, grow and retain talents, in an academic context as well, has become critical –both in the perspective of didactics and research and as far as administration and institutional management are concerned. At the same time, the contemporary philanthropic entities/organizations, which are evolving from traditional types of social support towards new styles of aid, envisaged to go beyond mere monetary donations, face the challenge of brand-new forms of complexity in supporting such specific dynamics of the global human capital market. In this sense, it becomes unavoidable for the philanthropic foundation, while carrying out their daily charitable tasks, to resort to innovative ways to facilitate the acquisition and the promotion of talents by academic and research institutions. In order to deepen such a specific perspective, this paper features the case of Turin, former 'factory city' of Italy’s North West, headquarters -and main reference territory- of Italy’s largest and richest private formerly bank-based philanthropic foundation, the Fondazione Compagnia di San Paolo. While it was assessed and classified as 'medium' in the city Global Talent Competitiveness Index (GTCI) of 2020, Turin has nevertheless acquired over the past months status of impact laboratory for a whole series of innovation strategies in the competition for the acquisition of excellence human capital. Leading actors of this new city vision are the foundations with their specifically adjusted financial engagement and a consistent role of stimulus towards innovation for research and education institutions.

Keywords: human capital, post-Fordism, private foundation, war on talents

Procedia PDF Downloads 171
6560 Is Audit Quality Implied by Accruals Quality Associated with Audit Fees and Auditor Tenure? Evidence from China

Authors: Hassan Y. Kikhia, Jin P. Zhang, Khaldoon G. Albiatr

Abstract:

The Enron and Arthur Andersen scandal has raised concerns internationally about auditor independence and audit quality. Furthermore, the debate continues about the relationship between audit fees, auditor tenure and audit quality in spite of extensive empirical evidence examining audit failures and earnings management. Therefore, the purpose of current research is to determine the effect of audit fee and audit tenure both partially and simultaneously on the audit quality. Using a sample of Chinese firms, an environment where we believe it provides us with an opportunity to test whether the development of market and legal institutions affects the impact of audit fees and auditor tenure on audit quality. We employ the standard deviation of residuals from regressions relating current accruals to cash flows as proxy for audit quality. The paper documents statistically significant negative association between audit fees and audit quality. These findings are consistent with economic bonding being a determinant of auditor behavior rather than auditor reputational concerns. Further, the current paper shows a positive association between auditor tenure and audit quality in the earlier years of audit tenure. These results support the proposition that when the Learning Effect dominates the Bonding Effect in the earlier years of tenure, then audit quality is likely to be higher. Taken audit fees and audit tenure together, the results suggest that there is positive association between audit fees and audit quality in the earlier years of auditor tenure. Interestingly, the findings of our study have important implications for auditors, policymakers, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investors. To a lesser extent, our paper also differs from the prior studies in methodology and findings in the investigation of audit quality.

Keywords: audit quality, accruals quality, audit fees, auditor tenure

Procedia PDF Downloads 280
6559 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate

Procedia PDF Downloads 188
6558 Role of Finance in Firm Innovation and Growth: Evidence from African Countries

Authors: Gebrehiwot H., Giorgis Bahita

Abstract:

Firms in Africa experience less financial market in comparison to other emerging and developed countries, thus lagging behind the rest of the world in terms of innovation and growth. Though there are different factors to be considered, underdeveloped financial systems take the lion's share in hindering firm innovation and growth in Africa. Insufficient capacity to innovate is one of the problems facing African businesses. Moreover, a critical challenge faced by firms in Africa is access to finance and the inability of financially constrained firms to grow. Only little is known about how different sources of finance affect firm innovation and growth in Africa, specifically the formal and informal finance effect on firm innovation and growth. This study's aim is to address this gap by using formal and informal finance for working capital and fixed capital and its role in firm innovation and firm growth using firm-level data from the World Bank enterprise survey 2006-2019 with a total of 5661 sample firms from 14 countries based on available data on the selected variables. Additionally, this study examines factors for accessing credit from a formal financial institution. The logit model is used to examine the effect of finance on a firm’s innovation and factors to access formal finance, while the Ordinary List Square (OLS) regression mode is used to investigate the effect of finance on firm growth. 2SLS instrumental variables are used to address the possible endogeneity problem in firm growth and finance-innovation relationships. A result from the logistic regression indicates that both formal and informal finance used for working capital and investment in fixed capital was found to have a significant positive association with product and process innovation. In the case of finance and growth, finding show that positive association of both formal and informal financing to working capital and new investment in fixed capital though the informal has positive relations to firm growth as measured by sale growth but no significant association as measured by employment growth. Formal finance shows more magnitude of effect on innovation and growth when firms use formal finance to finance investment in fixed capital, while informal finance show less compared to formal finance and this confirms previous studies as informal is mainly used for working capital in underdeveloped economies like Africa. The factors that determine credit access: Age, firm size, managerial experience, exporting, gender, and foreign ownership are found to have significant determinant factors in accessing credit from formal and informal sources among the selected sample countries.

Keywords: formal finance, informal finance, innovation, growth

Procedia PDF Downloads 76
6557 Effect of Non-Tariff Measures to Indonesian Shrimp Export in International Market: Case of Sanitary and Phytosanitary and Technical Barriers to Trade

Authors: Muhammad Khaliqi, Amzul Rifin, Andriyono Kilat Adhi

Abstract:

The non-tariff policy could make Indonesian shrimp exports decrease in the international market. This research was aimed to analyze factors affecting Indonesia's exports of shrimp and the impact of SPS and TBT policy on Indonesian shrimp. Factors affecting the exports of Indonesian shrimp were estimated using gravity model. The results showed the GDP of exporters and exchange rate, have a negative influence against the export of Indonesia’s shrimp exports. The GDP of the importers and trade cost have a positive influence against the export of shrimp Indonesia while the SPS policy and TBT don’t affect Indonesia's exports of shrimp in the international market.

Keywords: gravity model, international trade, non-tariff measure, sanitary and phytosanitary, shrimp, technical barriers to trade

Procedia PDF Downloads 194
6556 Stock Price Informativeness and Profit Warnings: Empirical Analysis

Authors: Adel Almasarwah

Abstract:

This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.

Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity

Procedia PDF Downloads 142
6555 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
6554 Restriction on the Freedom of Economic Activity in the Polish Energy Law

Authors: Zofia Romanowska

Abstract:

Recently there have been significant changes in the Polish energy market. Due to the government's decision to strengthen energy security as well as to strengthen the implementation of the European Union common energy policy, the Polish energy market has been undergoing significant changes. In the face of these, it is necessary to answer the question about the direction the Polish energy rationing sector is going, how wide apart the powers of the state are and also whether the real regulator of energy projects in Poland is not in fact the European Union itself. In order to determine the role of the state as a regulator of the energy market, the study analyses the basic instruments of regulation, i.e. the licenses, permits and permissions to conduct various activities related to the energy market, such as the production and sale of liquid fuels or concessions for trade in natural gas. Bearing in mind that Polish law is part of the widely interpreted European Union energy policy, the legal solutions in neighbouring countries are also being researched, including those made in Germany, a country which plays a key role in the shaping of EU policies. The correct interpretation of the new legislation modifying the current wording of the Energy Law Act, such as obliging the entities engaged in the production and trade of liquid fuels (including abroad) to meet a number of additional requirements for the licensing and providing information to the state about conducted business, plays a key role in the study. Going beyond the legal framework for energy rationing, the study also includes a legal and economic analysis of public and private goods within the energy sector and delves into the subject of effective remedies. The research caused the relationships between progressive rationing introduced by the legislator and the rearrangement rules prevailing on the Polish energy market to be taken note of, which led to the introduction of greater transparency in the sector. The studies refer to the initial conclusion that currently, despite the proclaimed idea of liberalization of the oil and gas market and the opening of market to a bigger number of entities as a result of the newly implanted changes, the process of issuing and controlling the conduction of the concessions will be tightened, guaranteeing to entities greater security of energy supply. In the long term, the effect of the introduced legislative solutions will be the reduction of the amount of entities on the energy market. The companies that meet the requirements imposed on them by the new regulation to cope with the profitability of the business will in turn increase prices for their services, which will be have an impact on consumers' budgets.

Keywords: license, energy law, energy market, public goods, regulator

Procedia PDF Downloads 246
6553 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 111
6552 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 282
6551 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie

Abstract:

In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 482
6550 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 234
6549 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 147
6548 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226