Search results for: delay tolerant networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3747

Search results for: delay tolerant networks

2577 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 324
2576 Modified Montgomery for RSA Cryptosystem

Authors: Rupali Verma, Maitreyee Dutta, Renu Vig

Abstract:

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence, efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

Keywords: RSA, montgomery modular multiplication, 4:2 compressor, FPGA

Procedia PDF Downloads 414
2575 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband

Authors: N. Azadi-Tinat, H. Oraizi

Abstract:

Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.

Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband

Procedia PDF Downloads 393
2574 Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods

Authors: Moheb R. Girgis, Tarek M. Mahmoud, Bahgat A. Abdullatif, Ahmed M. Rabie

Abstract:

Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions.

Keywords: wireless mesh networks, genetic algorithms, simulated annealing, topology design

Procedia PDF Downloads 459
2573 Robust ResNets for Chemically Reacting Flows

Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi

Abstract:

Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.

Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets

Procedia PDF Downloads 121
2572 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 22
2571 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks

Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa

Abstract:

In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.     

Keywords: collaborative network, matching, partner, preference list, role

Procedia PDF Downloads 238
2570 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache

Abstract:

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting

Procedia PDF Downloads 55
2569 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 204
2568 Networking the Biggest Challenge in Hybrid Cloud Deployment

Authors: Aishwarya Shekhar, Devesh Kumar Srivastava

Abstract:

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Keywords: cloud computing, networking, infrastructure, hybrid cloud, open stack, naas

Procedia PDF Downloads 428
2567 Component-Based Approach in Assessing Sewer Manholes

Authors: Khalid Kaddoura, Tarek Zayed

Abstract:

Sewer networks are constructed to protect the communities and the environment from any contact with the sewer mediums. Pipelines, being laterals or sewer mains, and manholes form the huge underground infrastructure in every urban city. Due to the sewer networks importance, the infrastructure asset management field has extensive advancement in condition assessment and rehabilitation decision models. However, most of the focus was devoted to pipelines giving little attention toward manholes condition assessment. In fact, recent studies started to emerge in this area to preserve manholes from any malfunction. Therefore, the main objective of this study is to propose a condition assessment model for sewer manholes. The model divides the manhole into several components and determines the relative importance weight of each component using the Analytic Network Process (ANP) decision-making method. Later, the condition of the manhole is computed by aggregating the condition of each component with its corresponding weight. Accordingly, the proposed assessment model will enable decision-makers to have a final index suggesting the overall condition of the manhole and a backward analysis to check the condition of each component. Consequently, better decisions are made pertinent to maintenance, rehabilitation, and replacement actions.

Keywords: Analytic Network Process (ANP), condition assessment, decision-making, manholes

Procedia PDF Downloads 356
2566 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha

Abstract:

Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 484
2565 Yield, Biochemical Responses and Evaluation of Drought Tolerance of Two Barley Accessions 'Ardhaoui' under Deficit Drip Irrigation Using Saline Water in Southern Tunisia

Authors: Mohamed Bagues, Ikbel Souli, Feiza Boussora, Kamel Nagaz

Abstract:

In southern Tunisia, two local barley accessions CV. Ardhaoui; 'Bengardeni' and 'Karkeni' were cultivated in the field under deficit drip irrigation with saline water. Three treatments were used: control or full irrigation T0 (100%ETc) and stressed T1 (75%ETc), T2 (50%ETc). Proline and soluble sugars contents increase significantly under drought between accessions compared to control and varies between growth stages. Moreover, the increasing of Ca2+ concentration enhances the absorption of Na+ ion, consequently K+/Na+ decrease significantly between accessions, these results suggest that a high tolerance of Bengardeni accession to drought stress. Therefore, drought tolerance indices (STI, SSI, MP, GMP, YSI and TOL) were used to identify high yielding and drought tolerant between accessions. MP explained the variation of GYi. GMP and STI explained the variation of GYs. The high values of MP, STI and GMP were associated with higher yielding accession. Higher TOL value is associated with significant grain yield reduction in stressed environment suggesting higher stress responses of accessions. Significant positive correlations between MP, STI and GMP and negative between YSI and SSI. MP, STI, GMP and YSI, TOL, SSI are not correlated with each other.

Keywords: drought, proline, soluble sugars, minerals, yield, drought tolerance indices, barley

Procedia PDF Downloads 243
2564 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 251
2563 Impact of Intelligent Transportation System on Planning, Operation and Safety of Urban Corridor

Authors: Sourabh Jain, S. S. Jain

Abstract:

Intelligent transportation system (ITS) is the application of technologies for developing a user–friendly transportation system to extend the safety and efficiency of urban transportation systems in developing countries. These systems involve vehicles, drivers, passengers, road operators, managers of transport services; all interacting with each other and the surroundings to boost the security and capacity of road systems. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. Intelligent transportation system is a product of the revolution in information and communications technologies that is the hallmark of the digital age. The basic ITS technology is oriented on three main directions: communications, information, integration. Information acquisition (collection), processing, integration, and sorting are the basic activities of ITS. In the paper, attempts have been made to present the endeavor that was made to interpret and evaluate the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of six lanes as well as eight lanes divided road network. Two categories of data have been collected such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, stop watch, radar gun, and mobile GPS (GPS tracker lite). From the analysis, the performance interpretations incorporated were the identification of peak and off-peak hours, congestion and level of service (LOS) at midblock sections and delay followed by plotting the speed contours. The paper proposed the urban corridor management strategies based on sensors integrated into both vehicles and on the roads that those have to be efficiently executable, cost-effective, and familiar to road users. It will be useful to reduce congestion, fuel consumption, and pollution so as to provide comfort, safety, and efficiency to the users.

Keywords: ITS strategies, congestion, planning, mobility, safety

Procedia PDF Downloads 179
2562 Losing Benefits from Social Network Sites Usage: An Approach to Estimate the Relationship between Social Network Sites Usage and Social Capital

Authors: Maoxin Ye

Abstract:

This study examines the relationship between social network sites (SNS) usage and social capital. Because SNS usage can expand the users’ networks, and people who are connected in this networks may become resources to SNS users and lead them to advantage in some situation, it is important to estimate the relationship between SNS usage and ‘who’ is connected or what resources the SNS users can get. Additionally, ‘who’ can be divided in two aspects – people who possess high position and people who are different, hence, it is important to estimate the relationship between SNS usage and high position people and different people. This study adapts Lin’s definition of social capital and the measurement of position generator which tells us who was connected, and can be divided into the same two aspects as well. A national data of America (N = 2,255) collected by Pew Research Center is utilized to do a general regression analysis about SNS usage and social capital. The results indicate that SNS usage is negatively associated with each factor of social capital, and it suggests that, in fact, comparing with non-users, although SNS users can get more connections, the variety and resources of these connections are fewer. For this reason, we could lose benefits through SNS usage.

Keywords: social network sites, social capital, position generator, general regression

Procedia PDF Downloads 264
2561 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 412
2560 Symbol Synchronization and Resource Reuse Schemes for Layered Video Multicast Service in Long Term Evolution Networks

Authors: Chung-Nan Lee, Sheng-Wei Chu, You-Chiun Wang

Abstract:

LTE (Long Term Evolution) employs the eMBMS (evolved Multimedia Broadcast/Multicast Service) protocol to deliver video streams to a multicast group of users. However, it requires all multicast members to receive a video stream in the same transmission rate, which would degrade the overall service quality when some users encounter bad channel conditions. To overcome this problem, this paper provides two efficient resource allocation schemes in such LTE network: The symbol synchronization (S2) scheme assumes that the macro and pico eNodeBs use the same frequency channel to deliver the video stream to all users. It then adopts a multicast transmission index to guarantee the fairness among users. On the other hand, the resource reuse (R2) scheme allows eNodeBs to transmit data on different frequency channels. Then, by introducing the concept of frequency reuse, it can further improve the overall service quality. Extensive simulation results show that the S2 and R2 schemes can respectively improve around 50% of fairness and 14% of video quality as compared with the common maximum throughput method.

Keywords: LTE networks, multicast, resource allocation, layered video

Procedia PDF Downloads 390
2559 One Decade Later: The Conundrum of Unrecognized Asherman Syndrome

Authors: Maria Francesca Lavadia-Gumabao, Mary Antoinette Salvamante-Torallo

Abstract:

Introduction: The fibrous intrauterine adhesions forming inside the uterus and/or cervix in Asherman syndrome can obstruct the internal cervical orifice and may present as a case of outflow tract obstruction. Asherman syndrome is often overlooked since it has no specific presentation and is undetectable by routine physical examinations or diagnostic procedures such as an ultrasound. This paper highlights the delay and elusive diagnosis of Asherman syndrome which negatively impacted the patient’s fertility and quality of life. Case presentation: A 33-year-old woman (gravida 3, para 3) who presented with secondary amenorrhea for thirteen years associated with cyclic pelvic pain and secondary infertility sought a consultation at our institution for evaluation and specialty management. The patient had no other well-established risk factors for Asherman syndrome aside from pregnancy. For more than a decade, she delayed seeking medical care. At presentation, history taking, physical examination, and ultrasound were not helpful in identifying the cause of outflow tract obstruction. Diagnostic hysteroscopy was then performed, during which extensive scarring and fibrosis completely obscured the internal cervical orifice were observed, consistent with the diagnosis of Asherman syndrome (Grade 5B). The patient then underwent ultrasound guided hysteroscopy outflow tract dilatation and responded well to the treatment as she had her menstrual period a month after the procedure and no longer had cyclic pelvic pain with a repeat ultrasound finding of an unremarkable uterus. The hispathology result of the tissues retrieved revealed myometrial fragments with associated old hemorrhage benign endometrial stromal tissues, which failed to show endometrial glands. Conclusion: The delay and elusive diagnosis of Asherman syndrome can be brought about by poor health seeking behavior of patients and difficulty in detecting this condition by routine physical examinations or diagnostic procedures such as an ultrasound. It is, therefore, necessary to include Asherman syndrome in the differential diagnosis of secondary amenorrhea and secondary infertility. With expertise in hysteroscopy, early diagnosis, proper classification in the advent of hysteroscopy, and optimal management can improve patient outcomes.

Keywords: Asherman syndrome, outflow tract obstruction, secondary amenorrhea, infertility, hysteroscopy

Procedia PDF Downloads 12
2558 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks

Authors: Jiajun Wang, Xiaoge Li

Abstract:

The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.

Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree

Procedia PDF Downloads 223
2557 Germination Behavior of Tricholaena teneriffae L. a perennial Grass Species

Authors: Imed Mezghani, Yousra Ben Salah, Mohamed Chaieb

Abstract:

Tricholaena teneriffae L. is a xerophytic perennial herb that belongs to the Poaceae family likely to be used for ecological restoration programs. It's a dominant and economically important species widely distributed in the Bou-Hedma National Park, Tunisia. Reintroduction and expansion of T. teneriffae depend solely on sexual reproduction. This makes the understanding of its germination requirements vital for conservation and management. To provide basic information for its conservation and reintroduction, we studied the influence of environmental factors on seed germination patterns. The germination responses of seeds were determined over a wide range of constant temperatures (15–35°C), polyethylene glycol solutions of different osmotic potentials (0 to −2 MPa) and salt solution (0 to 150 mM of NaCl). Results indicated that the optimum temperature germination was attained at 25°C which corresponds to temperatures prevailing during mid spring season in the Mediterranean area. Seeds germinated in Polyethylene Glycol solutions exhibited significantly lower germination than control especially when water potential fell below -0.6 MPa. Germination percentage and rate decreased with an increase NaCl concentration. Seeds germination was substantially delayed and reduced with an increase in NaCl to levels above 50 mM. T. teneriffae is moderately salt tolerant at germination stage.

Keywords: germination, temperature, Tricholaena teneriffae L., salt stress, water stress, rehabilitation

Procedia PDF Downloads 296
2556 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.

Keywords: asphalt, glass, pavement, recycled aggregate, sustainability

Procedia PDF Downloads 237
2555 Economic Life of Iranians on Instagram and the Disturbance in Politics

Authors: Mohammad Zaeimzade

Abstract:

The development of communication technologies is clearly and rapidly moving towards reducing the distance between the virtual and real worlds. Of course, living in a two-spatial or two-globalized world or any other interpretation that means mixing real and virtual life is still relevant and debatable. In the present age of communication, where social networks have transformed the message equation and turned the audience out of passivity and turned into a user. Platforms have penetrated widely in various aspects of human life, from culture and education and economy. Among the messengers, Instagram, which is one of the most extensive image-based interactive networks, plays a significant role in the new economic life. It doesn't need much explanation that the era of thinking of every messenger as a non-insulating conductor that is just a neutral load has passed. Every messenger has its own economic, political and of course security background, Instagram is no exception to this rule and of course it leaves its effects in bio-economics as well. Iran, as the 19th largest economy in the world, has not been unaffected by new platforms, including Instagram, and their consequences in the economy. Generally, in the policy-making space, there are two simple and inflexible pessimistic or optimistic views on this issue, and each of the holders of these views usually have their own one-dimensional policy recommendations regarding how to deal with Instagram. Prescriptions that are usually very different and sometimes contradictory. In this article, we show that this confusion of policymakers is the result of not accurately describing the reality of its effect, and the reason for this inaccurate description is the existence of a conflict of interests in the eyes of describers and researchers. In this article, we first take a look at the main indicators of the Iranian economy, estimate the role of the digital economy in Iran's economic growth, then study the conflicting descriptions of the Instagram-based digital economy, the statistics that show the tolerance of economic users of Instagram in Iran. 300 thousand to 9 million have been estimated. Finally, we take a look at the government's actions in this matter, especially in the context of street riots in October and November 2022. And we suggest an intermediate idea.

Keywords: digital economy, instagram, conflict of interest, social networks

Procedia PDF Downloads 77
2554 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 200
2553 Free and Open Source Licences, Software Programmers, and the Social Norm of Reciprocity

Authors: Luke McDonagh

Abstract:

Over the past three decades, free and open source software (FOSS) programmers have developed new, innovative and legally binding licences that have in turn enabled the creation of innumerable pieces of everyday software, including Linux, Mozilla Firefox and Open Office. That FOSS has been highly successful in competing with 'closed source software' (e.g. Microsoft Office) is now undeniable, but in noting this success, it is important to examine in detail why this system of FOSS has been so successful. One key reason is the existence of networks or communities of programmers, who are bound together by a key shared social norm of 'reciprocity'. At the same time, these FOSS networks are not unitary – they are highly diverse and there are large divergences of opinion between members regarding which licences are generally preferable: some members favour the flexible ‘free’ or 'no copyleft' licences, such as BSD and MIT, while other members favour the ‘strong open’ or 'strong copyleft' licences such as GPL. This paper argues that without both the existence of the shared norm of reciprocity and the diversity of licences, it is unlikely that the innovative legal framework provided by FOSS would have succeeded to the extent that it has.

Keywords: open source, copyright, licensing, copyleft

Procedia PDF Downloads 375
2552 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 35
2551 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 301
2550 Human Performance Evaluating of Advanced Cardiac Life Support Procedure Using Fault Tree and Bayesian Network

Authors: Shokoufeh Abrisham, Seyed Mahmoud Hossieni, Elham Pishbin

Abstract:

In this paper, a hybrid method based on the fault tree analysis (FTA) and Bayesian networks (BNs) are employed to evaluate the team performance quality of advanced cardiac life support (ACLS) procedures in emergency department. According to American Heart Association (AHA) guidelines, a category relying on staff action leading to clinical incidents and also some discussions with emergency medicine experts, a fault tree model for ACLS procedure is obtained based on the human performance. The obtained FTA model is converted into BNs, and some different scenarios are defined to demonstrate the efficiency and flexibility of the presented model of BNs. Also, a sensitivity analysis is conducted to indicate the effects of team leader presence and uncertainty knowledge of experts on the quality of ACLS. The proposed model based on BNs shows that how the results of risk analysis can be closed to reality comparing to the obtained results based on only FTA in medical procedures.

Keywords: advanced cardiac life support, fault tree analysis, Bayesian belief networks, numan performance, healthcare systems

Procedia PDF Downloads 148
2549 Quantitative Comparison Complexity and Robustness of Supply Chain Network Based on Different Configurations

Authors: Ahmadreza Rezaei, Qiong Liu

Abstract:

Supply chain network made based on suppliers and product architecture design. these networks are complex and vulnerable that may be expose disruption risks. any supply chain network configuration has its own related complexity and robustness that can have direct effect on its efficiency. So it's necessary to evaluate any configuration with considering complexity and robustness aspects together. However, there is a lack of research about this subject to managers can evaluate their supply chain configurations and choose configuration with balanced complexity and robustness together. In this study, developed indicators improve robustness of supply chain with using framework to evaluate relationships between complexity and robustness of supply chain network under different network configurations . this framework includes Investigation and analysis of quantitative indicators based on network characteristics. Moreover, overall metrics of Shannon entropy is presented to evaluate network topological complexity. So we will analyze two factor of complexity and robustness of networks based on supply chain configurations As result, Complexity and Robustness are two integral components of network that show network resistances under disruption. It's necessary to attain a balanced level of complexity and robustness in network configurations. the proposed framework could be used in supply chain network to improve efficiency.

Keywords: supply chain design, structural complexity, robustness, supply chain configuration, Shannon entropy

Procedia PDF Downloads 10
2548 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study

Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh

Abstract:

Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.

Keywords: education, smartphone, social networks, teenagers

Procedia PDF Downloads 454