Search results for: adaptive neuro fuzzy inference
814 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 409813 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: building detection, local maximum filtering, matched filtering, multiscale
Procedia PDF Downloads 320812 Parameter Estimation for Contact Tracing in Graph-Based Models
Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar
Abstract:
We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference
Procedia PDF Downloads 77811 Model Evaluation of Action Potential Block in Whole-Animal Nerves Induced by Ultrashort, High-Intensity Electric Pulses
Authors: Jiahui Song
Abstract:
There have been decades of research into the action potential block in nerves. To our best knowledge electrical voltages can reversibly block the conduction of action potentials across whole animal nerves. Blocking biological electrical signaling pathways can have a variety of applications in muscular and sensory incapacitation and clinical research, including urethral pressure reduction and relieving chronic pain relief from a peripheral nerve injury. The cessation ability has been used in muscle activation and fatigue reduction. Ultrashort, high-intensity electric pulses modulate the membrane conductivity to block nerve conduction through the electroporation process. Nanopore formation on the membrane surface would increase the local membrane conductivity and effectively "short-out" the trans-membrane potential of a nerve that inhibits action potential propagation. This block would be similar in concept to stopping the propagation of an air-pressure wave down a "leaky" pipe. This research focuses on a distributed electrical model with an additional time-dependent membrane conductance to calculate the poration induced by the ultrashort, high-intensity electric pulses. The changes in membrane conductivity are used to predict changes in action potential transmission. A "strength-duration (SD)" curve is generated for action potential blockage and would be used as a design guide for benchmarking safety thresholds or setting the pulse voltage and/or durations necessary for neuro-muscular incapacitation.Keywords: action potential, ultrashort, high-intensity, nerve, strength-duration
Procedia PDF Downloads 18810 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object
Procedia PDF Downloads 233809 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities
Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin
Abstract:
It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.Keywords: finger movement, neural activity, blind decoding, M1
Procedia PDF Downloads 320808 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 12807 Possibilistic Aggregations in the Investment Decision Making
Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze
Abstract:
This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty
Procedia PDF Downloads 558806 Phylogenetic Relationships of Common Reef Fish Species in Vietnam
Authors: Dang Thuy Binh, Truong Thi Oanh, Le Phan Khanh Hung, Luong thi Tuong Vy
Abstract:
One of the greatest environmental challenges facing Asia is the management and conservation of the marine biodiversity threaten by fisheries overexploitation, pollution, habitat destruction, and climate change. To date, a few molecular taxonomical studies has been conducted on marine fauna in Vietnam. The purpose of this study was to clarify the phylogeny of economic and ecological reef fish species in Vietnam Reef fish species covering Labridae, Scaridae, Nemipteridae, Serranidae, Acanthuridae, Lutjanidae, Lethrinidae, Mullidae, Balistidae, Pseudochromidae, Pinguipedidae, Fistulariidae, Holocentridae, Synodontidae, and Pomacentridae representing 28 genera were collected from South and Center, Vietnam. Combine with Genbank sequences, a phylogenetic tree was constructed based on 16S gene of mitochondrial DNA using maximum parsimony, maximum likelihood, and Bayesian inference approaches. The phylogram showed the well-resolved clades at genus and family level. Perciformes is the major order of reef fish species in Vietnam. The monophyly of Perciformes is not strongly supported as it was clustered in the same clade with Tetraodontiformes syngnathiformes and Beryciformes. Continue sampling of commercial fish species and classification based on morphology and genetics to build DNA barcoding of fish species in Vietnam is really necessary.Keywords: reef fish, 16s rDNA, Vietnam, phylogeny
Procedia PDF Downloads 438805 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 125804 The Effects of Three Levels of Contextual Inference among adult Athletes
Authors: Abdulaziz Almustafa
Abstract:
Considering the critical role permanence has on predictions related to the contextual interference effect on laboratory and field research, this study sought to determine whether the paradigm of the effect depends on the complexity of the skill during the acquisition and transfer phases. The purpose of the present study was to investigate the effects of contextual interference CI by extending previous laboratory and field research with adult athletes through the acquisition and transfer phases. Male (n=60) athletes age 18-22 years-old, were chosen randomly from Eastern Province Clubs. They were assigned to complete blocked, random, or serial practices. Analysis of variance with repeated measures MANOVA indicated that, the results did not support the notion of CI. There were no significant differences in acquisition phase between blocked, serial and random practice groups. During the transfer phase, there were no major differences between the practice groups. Apparently, due to the task complexity, participants were probably confused and not able to use the advantages of contextual interference. This is another contradictory result to contextual interference effects in acquisition and transfer phases in sport settings. One major factor that can influence the effect of contextual interference is task characteristics as the nature of level of difficulty in sport-related skill.Keywords: contextual interference, acquisition, transfer, task difficulty
Procedia PDF Downloads 466803 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 138802 Communication and Management of Incidental Pathology in a Cohort of 1,214 Consecutive Appendicectomies
Authors: Matheesha Herath, Ned Kinnear, Bridget Heijkoop, Eliza Bramwell, Alannah Frazetto, Amy Noll, Prajay Patel, Derek Hennessey, Greg Otto, Christopher Dobbins, Tarik Sammour, James Moore
Abstract:
Background: Important incidental pathology requiring further action is commonly found during appendicectomy, macro- and microscopically. It is unknown whether the acute surgical unit (ASU) model affects the management and disclosure of these findings. Methods: An ASU model was introduced at our institution on 01/08/2012. In this retrospective cohort study, all patients undergoing appendicectomy 2.5 years before (traditional group) or after (ASU group) this date were compared. The primary outcomes were rates of appropriate management of the incidental findings and communication of the findings to the patient and to their general practitioner (GP). Results: 1,214 patients underwent emergency appendicectomy; 465 in the traditional group and 749 in the ASU group. 80 (6.6%) patients (25 and 55 in each respective period) had important incidental findings. There were 24 patients with benign polyps, 15 with neuro-endocrine tumour, 11 with endometriosis, 8 with pelvic inflammatory disease, 8 Enterobius vermicularis infection, 7 with low grade mucinous cystadenoma, 3 with inflammatory bowel disease, 2 with diverticulitis, 2 with tubo-ovarian mass, 1 with secondary appendiceal malignancy and none with primary appendiceal adenocarcinoma. One patient had dual pathologies. There was no difference between the traditional and ASU group with regards to communication of the findings to the patient (p=0.44) and their GP (p=0.27), and there was no difference in the rates of appropriate management (p=0.21). Conclusions: The introduction of an ASU model did not change rates of surgeon-to-patient and surgeon-to-GP communication nor affect rates of appropriate management of important incidental pathology during an appendectomy.Keywords: acute care surgery, appendicitis, appendicectomy, incidental
Procedia PDF Downloads 143801 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters
Authors: Shaban Guma, Naim Bajcinca
Abstract:
We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless
Procedia PDF Downloads 331800 Etiological Factors for Renal Cell Carcinoma: Five-Year Study at Mayo Hospital Lahore
Authors: Muhammad Umar Hassan
Abstract:
Renal cell carcinoma is a subset of kidney cancer that arises in the lining of DCT and is present in parenchymal tissue. Diagnosis is based on lab reports, including urinalysis, renal function tests (RFTs), and electrolyte balance, along with imaging techniques. Organ failure and other complications have been commonly observed in these cases. Over the years, the presentation of patients has varied, so carcinoma was classified on the basis of site, shape, and consistency for detailed analysis. Lifestyle patterns and occupational history were inquired about and recorded. Methods: Data from 100 patients presenting to the oncology and nephrology department of Mayo Hospital in the year 2015-2020 were included in this retrospective study on a random basis. The study was specifically focused on three risk factors. Smoking, occupational exposures, and Hakim medicine are taken by the patient for any cause. After procurement of data, follow-up contacts of these patients were established, resulting in a detailed analysis of lifestyle. Conclusion: The inference drawn is a direct causal link between smoking, industrial workplace exposure, and Hakim medicine with the development of Renal Cell Carcinoma. It was shown in the majority of the patients and hence confirmed our hypothesis.Keywords: renal cell carcinoma, kidney cancer, clear cell carcinoma
Procedia PDF Downloads 102799 The Quantitative Analysis of the Traditional Rural Settlement Plane Boundary
Authors: Yifan Dong, Xincheng Pu
Abstract:
Rural settlements originate from the accumulation of residential building elements, and their agglomeration forms the settlement pattern and defines the relationship between the settlement and the inside and outside. The settlement boundary is an important part of the settlement pattern. Compared with the simplification of the urban settlement boundary, the settlement of the country is more complex, fuzzy and uncertain, and then presents a rich and diverse boundary morphological phenomenon. In this paper, China traditional rural settlements plane boundary as the research object, using fractal theory and fractal dimension method, quantitative analysis of planar shape boundary settlement, and expounds the research for the architectural design, ancient architecture protection and renewal and development and the significance of the protection of settlements.Keywords: rural settlement, border, fractal, quantification
Procedia PDF Downloads 249798 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements
Procedia PDF Downloads 537797 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity
Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian
Abstract:
This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.Keywords: asset integrity modeling, interoperability, OWL, RDF/XML
Procedia PDF Downloads 187796 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators
Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean
Abstract:
In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram
Procedia PDF Downloads 431795 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 206794 Synergy and Complementarity in Technology-Intensive Manufacturing Networks
Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang
Abstract:
This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.Keywords: city system, complementarity, synergy network, higher-order network
Procedia PDF Downloads 43793 Control Law Design of a Wheeled Robot Mobile
Authors: Ghania Zidani, Said Drid, Larbi Chrifi-Alaoui, Abdeslam Benmakhlouf, Souad Chaouch
Abstract:
In this paper, we focus on the study for path tracking control of unicycle-type Wheeled Mobile Robots (WMR), by applying the Backstepping technic. The latter is a relatively new technic for nonlinear systems. To solve the problem of constraints nonholonomics met in the path tracking of such robots, an adaptive Backstepping based nonlinear controller is developed. The stability of the controller is guaranteed, using the Lyapunov theory. Simulation results show that the proposed controller achieves the objective and ensures good path tracking.Keywords: Backstepping control, kinematic and dynamic controllers, Lyapunov methods, nonlinear control systems, Wheeled Mobile Robot (WMR).
Procedia PDF Downloads 439792 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete
Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar
Abstract:
Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index
Procedia PDF Downloads 320791 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 124790 Challenging the Theory of Mind: Autism Spectrum Disorder, Social Construction, and Biochemical Explanation
Authors: Caroline Kim
Abstract:
The designation autism spectrum disorder (ASD) groups complex disorders in the development of the brain. Autism is defined essentially as a condition in which an individual lacks a theory of mind. The theory of mind, in this sense, explains the ability of an individual to attribute feelings, emotions, or thoughts to another person. An autistic patient is characteristically unable to determine what an interlocutor is feeling, or to understand the beliefs of others. However, it is possible that autism cannot plausibly characterized as the lack of theory of mind in an individual. Genes, the bran, and its interplay with environmental factors may also cause autism. A mutation in a gene may be hereditary, or instigated by diseases such as mumps. Though an autistic patient may experience abnormalities in the cerebellum and the cortical regions, these are in fact only possible theories as to a biochemical explanation behind the disability. The prevailing theory identifying autism with lacking the theory of mind is supported by behavioral observation, but this form of observation is itself determined by socially constructed standards, limiting the possibility for empirical verification. The theory of mind infers that the beliefs and emotions of people are causally based on their behavior. This paper demonstrates the fallacy of this inference, critiquing its basis in socially constructed values, and arguing instead for a biochemical approach free from the conceptual apparatus of language and social expectation.Keywords: autism spectrum disorder, sociology of psychology, social construction, the theory of mind
Procedia PDF Downloads 403789 Evolutionary Genomic Analysis of Adaptation Genomics
Authors: Agostinho Antunes
Abstract:
The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.Keywords: adaptation, animals, evolution, genomics
Procedia PDF Downloads 429788 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 374787 NK Cells Expansion Model from PBMC Led to a Decrease of CD4+ and an Increase of CD8+ and CD25+CD127- T-Reg Lymphocytes in Patients with Ovarian Neoplasia
Authors: Rodrigo Fernandes da Silva, Daniela Maira Cardozo, Paulo Cesar Martins Alves, Sophie Françoise Derchain, Fernando Guimarães
Abstract:
T-reg lymphocytes are important for the control of peripheral tolerance. They control the adaptive immune system and prevent autoimmunity through its suppressive action on CD4+ and CD8+ lymphocytes. The suppressive action also includes B lymphocytes, dendritic cells, monocytes/macrophages and recently, studies have shown that T-reg are also able to inhibit NK cells, therefore they exert their control of the immune response from innate to adaptive response. Most tumors express self-ligands, therefore it is believed that T-reg cells induce tolerance of the immune system, hindering the development of successful immunotherapies. T-reg cells have been linked to the suppression mechanisms of the immune response against tumors, including ovarian cancer. The goal of this study was to disclose the sub-population of the expanded CD3+ lymphocytes reported by previous studies, using the long-term culture model designed by Carlens et al 2001, to generate effector cell suspensions enriched with cytotoxic CD3-CD56+ NK cells, from PBMC of ovarian neoplasia patients. Methods and Results: Blood was collected from 12 patients with ovarian neoplasia after signed consent: 7 benign (Bng) and 5 malignant (Mlg). Mononuclear cells were separated by Ficoll-Paque gradient. Long-term culture was conducted by a 21 day culturing process with SCGM CellGro medium supplemented with anti-CD3 (10ng/ml, first 5 days), IL-2 (1000UI/ml) and FBS (10%). After 21 days of expansion, there was an increase in the population of CD3+ lymphocytes in the benign and malignant group. Within CD3+ population, there was a significant decrease in the population of CD4+ lymphocytes in the benign (median Bgn D-0=73.68%, D-21=21.05%) (p<0.05) and malignant (median Mlg D-0=64.00%, D-21=11.97%) (p < 0.01) group. Inversely, after 21 days of expansion, there was an increase in the population of CD8+ lymphocytes within the CD3+ population in the benign (median Bgn D-0=16.80%, D-21=38.56%) and malignant (median Mlg D-0=27.12%, D-21=72.58%) group. However, this increase was only significant on the malignant group (p<0.01). Within the CD3+CD4+ population, there was a significant increase (p < 0.05) in the population of T-reg lymphocytes in the benign (median Bgn D-0=9.84%, D-21=39.47%) and malignant (median Mlg D-0=3.56%, D-21=16.18%) group. Statistical analysis inter groups was performed by Kruskal-Wallis test and intra groups by Mann Whitney test. Conclusion: The CD4+ and CD8+ sub-population of CD3+ lymphocytes shifts with the culturing process. This might be due to the process of the immune system to produce a cytotoxic response. At the same time, T-reg lymphocytes increased within the CD4+ population, suggesting a modulation of the immune response towards cells of the immune system. The expansion of the T-reg population can hinder an immune response against cancer. Therefore, an immunotherapy using this expansion procedure should aim to halt the expansion of T-reg or its immunosuppresion capability.Keywords: regulatory T cells, CD8+ T cells, CD4+ T cells, NK cell expansion
Procedia PDF Downloads 451786 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis
Authors: Kuixi Du, Thomas J. Lipscomb
Abstract:
The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies
Procedia PDF Downloads 97785 Detecting of Crime Hot Spots for Crime Mapping
Authors: Somayeh Nezami
Abstract:
The management of financial and human resources of police in metropolitans requires many information and exact plans to reduce a rate of crime and increase the safety of the society. Geographical Information Systems have an important role in providing crime maps and their analysis. By using them and identification of crime hot spots along with spatial presentation of the results, it is possible to allocate optimum resources while presenting effective methods for decision making and preventive solutions. In this paper, we try to explain and compare between some of the methods of hot spots analysis such as Mode, Fuzzy Mode and Nearest Neighbour Hierarchical spatial clustering (NNH). Then the spots with the highest crime rates of drug smuggling for one province in Iran with borderline with Afghanistan are obtained. We will show that among these three methods NNH leads to the best result.Keywords: GIS, Hot spots, nearest neighbor hierarchical spatial clustering, NNH, spatial analysis of crime
Procedia PDF Downloads 329