Search results for: WSN (wireless sensor networks)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4325

Search results for: WSN (wireless sensor networks)

3155 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data

Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen

Abstract:

Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.

Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation

Procedia PDF Downloads 65
3154 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks

Authors: Hwayeon Song

Abstract:

The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.

Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect

Procedia PDF Downloads 247
3153 Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent

Authors: Nouria Bouchikhi, Soufiane Bedjaoui, C. Tewfik Bouchaour, Lamia Alachaher Bedjaoui, Ulrich Maschke

Abstract:

Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration.

Keywords: cross-linking density, liquid crystalline elastomers, phase diagrams, swelling

Procedia PDF Downloads 331
3152 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 436
3151 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision

Procedia PDF Downloads 428
3150 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 147
3149 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges

Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau

Abstract:

Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.

Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment

Procedia PDF Downloads 376
3148 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 64
3147 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach

Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov

Abstract:

Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.

Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology

Procedia PDF Downloads 114
3146 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 71
3145 Neural Network Approach to Classifying Truck Traffic

Authors: Ren Moses

Abstract:

The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.

Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions

Procedia PDF Downloads 309
3144 Identification of Coauthors in Scientific Database

Authors: Thiago M. R Dias, Gray F. Moita

Abstract:

The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.

Keywords: extraction, data integration, information retrieval, scientific collaboration

Procedia PDF Downloads 396
3143 Development of an Automatic Monitoring System Based on the Open Architecture Concept

Authors: Andrii Biloshchytskyi, Serik Omirbayev, Alexandr Neftissov, Sapar Toxanov, Svitlana Biloshchytska, Adil Faizullin

Abstract:

Kazakhstan has adopted a carbon neutrality strategy until 2060. In accordance with this strategy, it is necessary to introduce various tools to maintain the environmental safety of the environment. The use of IoT, in combination with the characteristics and requirements of Kazakhstan's environmental legislation, makes it possible to develop a modern environmental monitoring system. The article proposes a solution for developing an example of an automated system for the continuous collection of data on the concentration of pollutants in the atmosphere based on an open architecture. The Audino-based device acts as a microcontroller. It should be noted that the transmission of measured values is carried out via an open wireless communication protocol. The architecture of the system, which was used to build a prototype based on sensors, an Arduino microcontroller, and a wireless data transmission module, is presented. The selection of elementary components may change depending on the requirements of the system; the introduction of new units is limited by the number of ports. The openness of solutions allows you to change the configuration depending on the conditions. The advantages of the solutions are openness, low cost, versatility and mobility. However, there is no comparison of the working processes of the proposed solution with traditional ones.

Keywords: environmental monitoring, greenhouse gases emissions, environmental pollution, Industry 4.0, IoT, microcontroller, automated monitoring system.

Procedia PDF Downloads 48
3142 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs

Authors: Navneet Kaur, Amarpreet Singh

Abstract:

In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.

Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network

Procedia PDF Downloads 348
3141 Detection of Triclosan in Water Based on Nanostructured Thin Films

Authors: G. Magalhães-Mota, C. Magro, S. Sério, E. Mateus, P. A. Ribeiro, A. B. Ribeiro, M. Raposo

Abstract:

Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol], belonging to the class of Pharmaceuticals and Personal Care Products (PPCPs), is a broad-spectrum antimicrobial agent and bactericide. Because of its antimicrobial efficacy, it is widely used in personal health and skin care products, such as soaps, detergents, hand cleansers, cosmetics, toothpastes, etc. However, it has been considered to disrupt the endocrine system, for instance, thyroid hormone homeostasis and possibly the reproductive system. Considering the widespread use of triclosan, it is expected that environmental and food safety problems regarding triclosan will increase dramatically. Triclosan has been found in river water samples in both North America and Europe and is likely widely distributed wherever triclosan-containing products are used. Although significant amounts are removed in sewage plants, considerable quantities remain in the sewage effluent, initiating widespread environmental contamination. Triclosan undergoes bioconversion to methyl-triclosan, which has been demonstrated to bio accumulate in fish. In addition, triclosan has been found in human urine samples from persons with no known industrial exposure and in significant amounts in samples of mother's milk, demonstrating its presence in humans. The action of sunlight in river water is known to turn triclosan into dioxin derivatives and raises the possibility of pharmacological dangers not envisioned when the compound was originally utilized. The aim of this work is to detect low concentrations of triclosan in an aqueous complex matrix through the use of a sensor array system, following the electronic tongue concept based on impedance spectroscopy. To achieve this goal, we selected the appropriate molecules to the sensor so that there is a high affinity for triclosan and whose sensitivity ensures the detection of concentrations of at least nano-molar. Thin films of organic molecules and oxides have been produced by the layer-by-layer (LbL) technique and sputtered onto glass solid supports already covered by gold interdigitated electrodes. By submerging the films in complex aqueous solutions with different concentrations of triclosan, resistance and capacitance values were obtained at different frequencies. The preliminary results showed that an array of interdigitated electrodes sensor coated or uncoated with different LbL and films, can be used to detect TCS traces in aqueous solutions in a wide range concentration, from 10⁻¹² to 10⁻⁶ M. The PCA method was applied to the measured data, in order to differentiate the solutions with different concentrations of TCS. Moreover, was also possible to trace a curve, the plot of the logarithm of resistance versus the logarithm of concentration, which allowed us to fit the plotted data points with a decreasing straight line with a slope of 0.022 ± 0.006 which corresponds to the best sensitivity of our sensor. To find the sensor resolution near of the smallest concentration (Cs) used, 1pM, the minimum measured value which can be measured with resolution is 0.006, so the ∆logC =0.006/0.022=0.273, and, therefore, C-Cs~0.9 pM. This leads to a sensor resolution of 0.9 pM for the smallest concentration used, 1pM. This attained detection limit is lower than the values obtained in the literature.

Keywords: triclosan, layer-by-layer, impedance spectroscopy, electronic tongue

Procedia PDF Downloads 252
3140 Volcanoscape Space Configuration Zoning Based on Disaster Mitigation by Utilizing GIS Platform in Mt. Krakatau Indonesia

Authors: Vega Erdiana Dwi Fransiska, Abyan Rai Fauzan Machmudin

Abstract:

Particularly, space configuration zoning is the very first juncture of a complete space configuration and region planning. Zoning is aimed to define discrete knowledge based on a local wisdom. Ancient predecessor scientifically study the sign of natural disaster towards ethnography approach by operating this knowledge. There are three main functions of space zoning, which are control function, guidance function, and additional function. The control function refers to an instrument for development control and as one of the essentials in controlling land use. Hence, the guidance function indicates as guidance for proposing operational planning and technical development or land usage. Any additional function is useful as a supplementary for region or province planning details. This phase likewise accredits to define boundary in an open space based on geographical appearance. Informant who is categorized as an elder lives in earthquake prone area, to be precise the area is the surrounding of Mount Krakatau. The collected data is one of method for analyzed with thematic model. Later on, it will be verified. In space zoning, long-range distance sensor is applied to determine visualization of the area, which will be zoned before the step of survey to validate the data. The data, which is obtained from long-range distance sensor and site survey, will be overlaid using GIS Platform. Comparing the knowledge based on a local wisdom that is well known by elderly in that area, some of it is relevant to the research, while the others are not. Based on the site survey, the interpretation of a long-range distance sensor, and determining space zoning by considering various aspects resulted in the pattern map of space zoning. This map can be integrated with disaster mitigation affected by volcano eruption.

Keywords: elderly, GIS platform, local wisdom, space zoning

Procedia PDF Downloads 254
3139 Molecular Characterization of Arginine Sensing Response in Unravelling Host-Pathogen Interactions in Leishmania

Authors: Evanka Madan, Madhu Puri, Dan Zilberstein, Rohini Muthuswami, Rentala Madhubala

Abstract:

The extensive interaction between the host and pathogen metabolic networks decidedly shapes the outcome of infection. Utilization of arginine by the host and pathogen is critical for determining the outcome of pathogenic infection. Infections with L. donovani, an intracellular parasite, will lead to an extensive competition of arginine between the host and the parasite donovani infection. One of the major amino acid (AA) sensing signaling pathways in mammalian cells are the mammalian target of rapamycin complex I (mTORC1) pathway. mTORC1, as a sensor of nutrient, controls numerous metabolic pathways. Arginine is critical for mTORC1 activation. SLC38A9 is the arginine sensor for the mTORC1, being activated during arginine sufficiency. L. donovani transport arginine via a high-affinity transporter (LdAAP3) that is rapidly up-regulated by arginine deficiency response (ADR) in intracellular amastigotes. This study, to author’s best knowledge, investigates the interaction between two arginine sensing systems that act in the same compartment, the lysosome. One is important for macrophage defense, and the other is essential for pathogen virulence. We hypothesize that the latter modulates lysosome arginine to prevent host defense response. The work presented here identifies an upstream regulatory role of LdAAP3 in regulating the expression of SLC38A9-mTORC1 pathway, and consequently, their function in L. donovani infected THP-1 cells cultured in 0.1 mM and 1.5 mM arginine. It was found that in physiological levels of arginine (0.1 mM), infecting THP-1 with Leishmania leads to increased levels of SLC38A9 and mTORC1 via an increase in the expression of RagA. However, the reversal was observed with LdAAP3 mutants, reflecting the positive regulatory role of LdAAP3 on the host SLC38A9. At the molecular level, upon infection, mTORC1 and RagA were found to be activated at the surface of phagolysosomes which was found to form a complex with phagolysosomal localized SLC38A9. To reveal the relevance of SLC38A9 under physiological levels of arginine, endogenous SLC38A9 was depleted and a substantial reduction in the expression of host mTORC1, its downstream active substrate, p-P70S6K1 and parasite LdAAP3, was observed, thereby showing that silencing SLC38A9 suppresses ADR. In brief, to author’s best knowledge, these results reveal an upstream regulatory role of LdAAP3 in manipulating SLC38A9 arginine sensing in host macrophages. Our study indicates that intra-macrophage survival of L. donovani depends on the availability and transport of extracellular arginine. An understanding of the sensing pathway of both parasite and host will open a new perspective on the molecular mechanism of host-parasite interaction and consequently, as a treatment for Leishmaniasis.

Keywords: arginine sensing, LdAAP3, L. donovani, mTORC1, SLC38A9, THP-1

Procedia PDF Downloads 124
3138 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 39
3137 Changing Routes: The Adaptability of Somali Migrants and Their Smuggling Networks

Authors: Alexandra Amling, Emina Sadic

Abstract:

The migration routes linking the Horn of Africa to Europe shift in response to political and humanitarian developments across the region. Abrupt changes to those routes can have profound effects on the relative ease of movement and the well-being of migrants. Somali migrants have traditionally been able to rely on a sophisticated, well-established, and reliable network of smugglers to facilitate their journey through the Sahel to Libya, but changes to the routes have undermined those networks. Recently, these shifts have made the journey from Somalia to Europe much more perilous. As the Libyan coast guard intensifies its efforts to stymie boats leaving its coast for Italian shores, arrivals in Spain are trending upwards. This paper thus, will examine how the instability in transit countries that are most commonly used by Somali migrants has had an impact on the reliability of their massive network of smuggling, and how resurgence in the Western route toward Spain provides a potentially new opportunity to reach Europe—a route that has rarely been used by the Somali migrant population in the past. First, the paper will discuss what scholars have called the pastoralist, nomadic tradition of Somalis which reportedly has allowed them to endure the long journeys from Somalia to their chosen destinations. Facilitated by relatives or clan affiliation, Somali migrants have historically been able to rely on a smuggling network that – at least tangentially – provided more security nets during their travels. Given the violence and chaos that unfolded both in Libya and Yemen in 2011 and 2015, respectively, the paper will, secondly, examine which actors in smuggling hubs increase the vulnerabilities of Somalis, pushing them to consider other routes. As a result, this paper will consider to what extent Somalis could follow the stream of other migrants to Algeria and Morocco to enter Europe via Spain. By examining one particular group of migrants and the nature and limitations of the networks associated with their movements, the paper will demonstrate the resilience and adaptability of both the migrants and the networks regardless of the ever-changing nature of migration routes and actors.

Keywords: Europe, migration, smuggling networks, Somalia

Procedia PDF Downloads 190
3136 Topological Analyses of Unstructured Peer to Peer Systems: A Survey

Authors: Hend Alrasheed

Abstract:

Due to their different properties that have led to avoid several limitations of classic client/server systems, there has been a great interest in the development and the improvement of different peer to peer systems. Understanding the properties of complex peer to peer networks is essential for their future improvements. It was shown that the performances of peer to peer protocols are directly related to their underlying topologies. Therefore, multiple efforts have analyzed the topologies of different peer to peer systems. This study presents an overview of major findings of close experimental analyses to different topologies of three unstructured peer to peer systems: BitTorrent, Gnutella, and FreeNet.

Keywords: peer to peer networks, network topology, graph diameter, clustering coefficient, small-world property, random graph, degree distribution

Procedia PDF Downloads 381
3135 Gulfnet: The Advent of Computer Networking in Saudi Arabia and Its Social Impact

Authors: Abdullah Almowanes

Abstract:

The speed of adoption of new information and communication technologies is often seen as an indicator of the growth of knowledge- and technological innovation-based regional economies. Indeed, technological progress and scientific inquiry in any society have undergone a particularly profound transformation with the introduction of computer networks. In the spring of 1981, the Bitnet network was launched to link thousands of nodes all over the world. In 1985 and as one of the first adopters of Bitnet, Saudi Arabia launched a Bitnet-based network named Gulfnet that linked computer centers, universities, and libraries of Saudi Arabia and other Gulf countries through high speed communication lines. In this paper, the origins and the deployment of Gulfnet are discussed as well as social, economical, political, and cultural ramifications of the new information reality created by the network. Despite its significance, the social and cultural aspects of Gulfnet have not been investigated in history of science and technology literature to a satisfactory degree before. The presented research is based on an extensive archival research aimed at seeking out and analyzing of primary evidence from archival sources and records. During its decade and a half-long existence, Gulfnet demonstrated that the scope and functionality of public computer networks in Saudi Arabia have to be fine-tuned for compliance with Islamic culture and political system of the country. It also helped lay the groundwork for the subsequent introduction of the Internet. Since 1980s, in just few decades, the proliferation of computer networks has transformed communications world-wide.

Keywords: Bitnet, computer networks, computing and culture, Gulfnet, Saudi Arabia

Procedia PDF Downloads 245
3134 The Morphogenesis of an Informal Settlement: An Examination of Street Networks through the Informal Development Stages Framework

Authors: Judith Margaret Tymon

Abstract:

As cities struggle to incorporate informal settlements into the fabric of urban areas, the focus has often been on the provision of housing. This study explores the underlying structure of street networks, with the goal of understanding the morphogenesis of informal settlements through the lens of the access network. As the stages of development progress from infill to consolidation and eventually, to a planned in-situ settlement, the access networks retain the form of the core segments; however, a majority of street patterns are adapted to a grid design to support infrastructure in the final upgraded phase. A case study is presented to examine the street network in the informal settlement of Gobabis Namibia as it progresses from its initial stages to a planned, in-situ, and permanently upgraded development. The Informal Development Stages framework of foundation, infill, and consolidation, as developed by Dr. Jota Samper, is utilized to examine the evolution of street networks. Data is gathered from historical Google Earth satellite images for the time period between 2003 and 2022. The results demonstrate that during the foundation through infill stages, incremental changes follow similar patterns, with pathways extended, lengthened, and densified as housing is created and the settlement grows. In the final stage of consolidation, the resulting street layout is transformed to support the installation of infrastructure; however, some elements of the original street patterns remain. The core pathways remain intact to accommodate the installation of infrastructure and the creation of housing plots, defining the shape of the settlement and providing the basis of the urban form. The adaptations, growth, and consolidation of the street network are critical to the eventual formation of the spatial layout of the settlement. This study will include a comparative analysis of findings with those of recent research performed by Kamalipour, Dovey, and others regarding incremental urbanism within informal settlements. Further comparisons will also include studies of street networks of well-established urban centers that have shown links between the morphogenesis of access networks and the eventual spatial layout of the city. The findings of the study can be used to guide and inform strategies for in-situ upgrading and can contribute to the sustainable development of informal settlements.

Keywords: Gobabis Namibia, incremental urbanism, informal development stages, informal settlements, street networks

Procedia PDF Downloads 64
3133 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan

Abstract:

This research aims to study behaviors in using social networks of Corporate personnel of Suan Sunandha Rajabhat University. The sample used in the study were two groups: 1) Academic Officer 70 persons and 2) Operation Officer 143 persons were used in this study. The tools in this research consisted of questionnaire which the data were analyzed by using percentage, average (X) and Standard deviation (S.D.) and Independent Sample T-Test to test the difference between the mean values obtained from two independent samples, and One-way anova to analysis of variance, and Multiple comparisons to test that the average pair of different methods by Fisher’s Least Significant Different (LSD). The study result found that the most of corporate personnel have purpose in using social network to information awareness aspect was knowledge and online conference with social media. By using the average more than 3 hours per day in everyday. Using time in working in one day and there are computers connected to the Internet at home, by using the communication in the operational processes. Behaviors using social networks in relation to gender, age, job title, department, and type of personnel. Hypothesis testing, and analysis of variance for the effects of this analysis is divided into three aspects: The use of online social networks, the attitude of the users and the security analysis has found that Corporate Personnel of Suan Sunandha Rajabhat University. Overall and specifically at the high level, and considering each item found all at a high level. By sorting of the social network (X=3.22), The attitude of the users (X= 3.06) and the security (X= 3.11). The overall behaviors using of each side (X=3.11).

Keywords: social network, behaviors, social media, computer information systems

Procedia PDF Downloads 394
3132 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 331
3131 Movie and Theater Marketing Using the Potentials of Social Networks

Authors: Seyed Reza Naghibulsadat

Abstract:

The nature of communication includes various forms of media productions, which include film and theater. In the current situation, since social networks have emerged, they have brought their own communication capabilities and have features that show speed, public access, lack of media organization and the production of extensive content, and the development of critical thinking; Also, they contain capabilities to develop access to all kinds of media productions, including movies and theater shows; Of course, this works differently in different conditions and communities. In terms of the scale of exploitation, the film has a more general audience, and the theater has a special audience. The film industry is more developed based on more modern technologies, but the theater, based on the older ways of communication, contains more intimate and emotional aspects. ; But in general, the main focus is the development of access to movies and theater shows, which is emphasized by those involved in this field due to the capabilities of social networks. In this research, we will look at these 2 areas and the relevant components for both areas through social networks and also the common points of both types of media production. The main goal of this research is to know the strengths and weaknesses of using social networks for the marketing of movies and theater shows and, at the same time are, also considered the opportunities and threats of this field. The attractions of these two types of media production, with the emergence of social networks, and the ability to change positions, can provide the opportunity to become a media with greater exploitation and higher profitability; But the main consideration is the opinions about these capabilities and the ability to use them for film and theater marketing. The main question of the research is, what are the marketing components for movies and theaters using social media capabilities? What are its strengths and weaknesses? And what opportunities and threats are facing this market? This research has been done with two methods SWOT and meta-analysis. Non-probability sampling has been used with purposeful technique. The results show that a recent approach is an approach based on eliminating threats and weaknesses and emphasizing strengths, and exploiting opportunities in the direction of developing film and theater marketing based on the capabilities of social networks within the framework of local cultural values and presenting achievements on an international scale or It is universal. This introduction leads to the introduction of authentic Iranian culture and foreign enthusiasts in the framework of movies and theater art. Therefore, for this issue, the model for using the capabilities of social networks for movie or theater marketing, according to the results obtained from Respondents, is a model based on SO strategies and, in other words, offensive strategies so that it can take advantage of the internal strengths and made maximum use of foreign situations and opportunities to develop the use of movies and theater performances.

Keywords: marketing, movies, theatrical show, social network potentials

Procedia PDF Downloads 76
3130 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks

Authors: Amin Sedighfar, M. R. Moniri

Abstract:

Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. 

Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery

Procedia PDF Downloads 192
3129 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 472
3128 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 110
3127 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 103
3126 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management

Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh

Abstract:

An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.

Keywords: crowdsourcing, facility maintenance management, social networks

Procedia PDF Downloads 173