Search results for: quantile regression theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7741

Search results for: quantile regression theory

7651 Weighted Rank Regression with Adaptive Penalty Function

Authors: Kang-Mo Jung

Abstract:

The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.

Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression

Procedia PDF Downloads 470
7650 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 280
7649 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron

Authors: Filippo Portera

Abstract:

Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.

Keywords: loss, binary-classification, MLP, weights, regression

Procedia PDF Downloads 93
7648 Interference among Lambsquarters and Oil Rapeseed Cultivars

Authors: Reza Siyami, Bahram Mirshekari

Abstract:

Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.

Keywords: green cover percentage, independent variable, interference, regression

Procedia PDF Downloads 420
7647 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression

Authors: Jamilatuzzahro, Rezzy Eko Caraka

Abstract:

The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.

Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government

Procedia PDF Downloads 243
7646 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 69
7645 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm

Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian

Abstract:

The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.

Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool

Procedia PDF Downloads 434
7644 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 194
7643 A Regression Model for Residual-State Creep Failure

Authors: Deepak Raj Bhat, Ryuichi Yatabe

Abstract:

In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.

Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils

Procedia PDF Downloads 405
7642 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 513
7641 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 372
7640 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs

Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro

Abstract:

This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.

Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression

Procedia PDF Downloads 442
7639 Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria.

Keywords: dissemblance index, forecasting, fuzzy sets, linear regression

Procedia PDF Downloads 360
7638 Image Compression Based on Regression SVM and Biorthogonal Wavelets

Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane

Abstract:

In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.

Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding

Procedia PDF Downloads 380
7637 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 263
7636 Application and Verification of Regression Model to Landslide Susceptibility Mapping

Authors: Masood Beheshtirad

Abstract:

Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.

Keywords: landslide, mapping, multiple model, regression

Procedia PDF Downloads 322
7635 Chinese Fantasy Novel: New Word Teaching for Non-Native Learners

Authors: Bok Check Meng, Goh Ying Soon

Abstract:

Giving additional learning materials such as Chinese fantasy novel to non-native learners can be strenuous. Instructors have to understand the underpinning theories about cognitive theory for new word instruction. This paper discusses the underpinning theories. Relevant literature reviews are given. There are basically five major areas of cognitive related theories mentioned in this article. These include motivational learning theory, Affective theory of learning, Cognitive psychology theory, Vocabulary acquisition theory and Bloom’s cognitive levels theory. A theoretical framework has been constructed. Thus, this will give a hand in ensuring non-native learners might gain positive outcomes in the instruction process. Instructors who are interested in teaching new word from Chinese fantasy novel in specific to support additional learning might be able to get insights from this article.

Keywords: Chinese fantasy novel, new word teaching, non-native learners, cognitive theory, bloom

Procedia PDF Downloads 733
7634 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 450
7633 The Impact of Online Advertising on Consumer Purchase Behaviour Based on Malaysian Organizations

Authors: Naser Zourikalatehsamad, Seyed Abdorreza Payambarpour, Ibrahim Alwashali, Zahra Abdolkarimi

Abstract:

The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.

Keywords: consumer purchase, convenience, customized product, cost saving, customization, flow theory, mass communication, online advertising ads, online advertising measurement, online advertising mechanism, online intelligence system, self-confidence, willingness to purchase

Procedia PDF Downloads 476
7632 Contextualizing Theory Z of Motivation Among Indian Universities of Higher Education

Authors: Janani V., Tanika Singh, Bala Subramanian R., Santosh Kumar Sharma

Abstract:

Higher education across the globe is undergoing a sea change. This has created a varied management of higher education in Indian universities, and therefore, we find no universal law regarding HR policies and practices in these universities. As a result, faculty retention is very low, which is a serious concern for educational leaders such as vice-chancellors or directors working in the higher education sector. We can understand this phenomenon in the light of various management theories, among which theory z proposed by William Ouchi is a prominent one. With this backdrop, the present article strives to contextualize theory z in Indian higher education. For the said purpose, qualitative methodology has been adopted, and accordingly, propositions have been generated. We believe that this article will motivate other researchers to empirically test the generated propositions and thereby contribute in the existing literature.

Keywords: education, managemenet, motivation, Theory X, Theory Y, Theory Z, faculty members, universities, India

Procedia PDF Downloads 112
7631 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm

Procedia PDF Downloads 143
7630 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan

Abstract:

Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.

Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy

Procedia PDF Downloads 307
7629 Logic of the Prospect Theory: The Decision Making Process of the First Gulf War and the Crimean Annexation

Authors: Zhengyang Ma, Zhiyao Li, Jiayi Zhang

Abstract:

This article examines the prospect theory’s arguments about decision-making through two case studies, the First Gulf War and Russia’s annexation of Crimea. The article uses the methods of comparative case analysis and process tracing to investigate the prospect theory’s fundamental arguments. Through evidence derived from existing primary and secondary sources, this paper argues that both former U.S. President Bush and Russian President Putin viewed their situations as a domain of loss and made risky decisions to prevent further deterioration, which attests the arguments of the prospect theory. After the two case studies, this article also discusses how the prospect theory could be used in analyzing the decision-making process that led to the current Russia-Ukraine War.

Keywords: the prospect theory, international relations, the first gulf war, the crimea crisis

Procedia PDF Downloads 124
7628 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?

Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq

Abstract:

Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.

Keywords: Cox regression, neural networks, survival, cancer.

Procedia PDF Downloads 198
7627 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution

Authors: Al Omari Mohammed Ahmed

Abstract:

This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.

Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring

Procedia PDF Downloads 439
7626 Disintegration of Deuterons by Photons Reaction Model for GEANT4 with Dibaryon Formalism

Authors: Jae Won Shin, Chang Ho Hyun

Abstract:

A disintegration of deuterons by photons (dγ → np) reaction model for GEANT4 is developed in this work. An effective field theory with dibaryon fields Introducing a dibaryon field, we can take into account the effective range contribution to the propagator up to infinite order, and it consequently makes the convergence of the theory better than the pionless effective field theory without dibaryon fields. We develop a hadronic model for GEANT4 which is specialized for the disintegration of the deuteron by photons, dγ → np. For the description of two-nucleon interactions, we employ an effective field theory so called pionless theory with dibaryon fields (dEFT). In spite of its simplicity, the theory has proven very effective and useful in the applications to various two-nucleon systems and processes at low energies. We apply the new model of GEANT4 (G4dEFT) to the calculation of total and differential cross sections in dγ → np, and obtain good agreements to experimental data for a wide range of incoming photon energies.

Keywords: dγ → np, dibaryon fields, effective field theory, GEANT4

Procedia PDF Downloads 373
7625 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 72
7624 Prenatal Lead Exposure and Postpartum Depression: An Exploratory Study of Women in Mexico

Authors: Nia McRae, Robert Wright, Ghalib Bello

Abstract:

Introduction: Postpartum depression is a prevalent mood disorder that is detrimental to the mental and physical health of mothers and their newborns. Lead (Pb) is a toxic metal that is associated with hormonal imbalance and mental impairments. The hormone changes that accompany pregnancy and childbirth may be exacerbated by Pb and increase new mothers’ susceptibility to postpartum depression. To the best of the author’s knowledge, this is the only study that investigates the association between prenatal Pb exposure and postpartum depression. Identifying risk factors can contribute to improved prevention and treatment strategies for postpartum depression. Methods: Data was derived from the Programming Research in Obesity, Growth, Environment and Social Stress (PROGRESS) study which is an ongoing longitudinal birth cohort. Postpartum depression was identified by a score of 13 or above on the 10-Item Edinburg Postnatal Depression Scale (EPDS) 6-months and 12-months postpartum. Pb was measured in the blood (BPb) in the second and third trimester and in the tibia and patella 1-month postpartum. Quantile regression models were used to assess the relationship between BPb and postpartum depression. Results: BPb in the second trimester was negatively associated with the 80th percentile of depression 6-months postpartum (β: -0.26; 95% CI: -0.51, -0.01). No significant association was found between BPb in the third trimester and depression 6-months postpartum. BPb in the third trimester exhibited an inverse relationship with the 60th percentile (β: -0.23; 95% CI: -0.41, -0.06), 70th percentile (β: -0.31; 95% CI: -0.52, -0.10), and 90th percentile of depression 12-months postpartum (β: -0.36; 95% CI: -0.69, -0.03). There was no significant association between BPb in the second trimester and depression 12-months postpartum. Bone Pb concentrations were not significantly associated with postpartum depression. Conclusion: The negative association between BPb and postpartum depression may support research which demonstrates lead is a nontherapeutic stimulant. Further research is needed to verify these results and identify effect modifiers.

Keywords: depression, lead, postpartum, prenatal

Procedia PDF Downloads 225
7623 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method

Authors: Luh Eka Suryani, Purhadi

Abstract:

Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.

Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion

Procedia PDF Downloads 158
7622 A Study of Chinese-specific Terms in Government Work Report(2017-2019) from the Perspective of Relevance Theory

Authors: Shi Jiaxin

Abstract:

The Government Work Report is an essential form of document in the government of the People’s Republic of China. It covers all aspects of Chinese society and reflects China’s development strategy and trend. There are countless special terms in Government Work Report. Only by understanding Chinese-specific terms can we understand the content of the Government Work Report. Only by accurately translating the Chinese-specific terms can people come from all across the world know the Chinese government work report and understand China. Relevance theory is a popular theory of cognitive pragmatics. Relevance Translation Theory, which is closely related to Relevance Theory, has crucial and major guiding significance for the translation of Chinese-specific. Through studying Relevance Theory and researching the translation techniques, strategies and applications in the process of translating Chinese-specific terms from the perspective of Relevance Theory, we can understand the meaning and connotation of Chinese-specific terms, then solve various problems in the process of C-E translation, and strengthen our translation ability.

Keywords: government work report, Chinese-specific terms, relevance theory, translation

Procedia PDF Downloads 167