Search results for: osteoblastic MG-63 cells
3132 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells
Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao
Abstract:
Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis
Procedia PDF Downloads 2143131 Co-Culture of Neonate Mouse Spermatogonial Stem Cells with Sertoli Cells: Inductive Role of Melatonin following Transplantation: Adult Azoospermia Mouse Model
Authors: Mehdi Abbasi, Shadan Navid, Mohammad Pourahmadi, M. Majidi Zolbin
Abstract:
We have recently reported that melatonin as antioxidant enhances the efficacy of colonization of spermatogonial stem cells (SSCs). Melatonin as an antioxidant plays a vital role in the development of SSCs in vitro. This study aimed to investigate evaluation of sertoli cells and melatonin simultaneously on SSC proliferation following transplantation to testis of adult mouse busulfan-treated azoospermia model. SSCs and sertoli cells were isolated from the testes of three to six-day old male mice.To determine the purity, Flow cytometry technique using PLZF antibody were evaluated. Isolated testicular cells were cultured in αMEM medium in the absence (control group) or presence (experimental group) of sertoli cells and melatonin extract for 2 weeks. We then transplanted SSCs by injection into the azoospermia mice model. Higher viability, proliferation, and Id4, Plzf, expression were observed in the presence of simultaneous sertoli cells and melatonin in vitro. Moreover, immunocytochemistry results showed higher Oct4 expression in this group. Eight weeks after transplantation, injected cells were localized at the base of seminiferous tubules in the recipient testes. The number of spermatogonia and the weight of testis were higher in the experimental group relative to control group. The results of our study suggest that this new protocol can increase the transplantation of these cells can be useful in the treatment of male infertility.Keywords: colonization, melatonin, spermatogonial stem cell, transplantation
Procedia PDF Downloads 1703130 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells
Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos
Abstract:
Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials
Procedia PDF Downloads 7603129 Performance and Lifetime of Tandem Organic Solar Cells
Authors: Guillaume Schuchardt, Solenn Berson, Gerard Perrier
Abstract:
Multi-junction solar cell configurations, where two sub-cells with complementary absorption are stacked and connected in series, offer an exciting approach to tackle the single junction limitations of organic solar cells and improve their power conversion efficiency. However, the augmentation of the number of layers has, as a consequence, to increase the risk of reducing the lifetime of the cell due to the ageing phenomena present at the interfaces. In this work, we study the intrinsic degradation mechanisms, under continuous illumination AM1.5G, inert atmosphere and room temperature, in single and tandem organic solar cells using Impedance Spectroscopy, IV Curves, External Quantum Efficiency, Steady-State Photocarrier Grating, Scanning Kelvin Probe and UV-Visible light.Keywords: single and tandem organic solar cells, intrinsic degradation mechanisms, characterization: SKP, EQE, SSPG, UV-Visible, Impedance Spectroscopy, optical simulation
Procedia PDF Downloads 3623128 Changed Behavior of the Porcine Hemagglutinating Encephalomyelitis Virus (Betacoronavirus) in Respiratory Epithelial Cells
Authors: Ateeqa Aslam, Hans J. Nauwynck
Abstract:
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a betacoronavirus that has been studied in the past as a cause of vomiting and wasting disease (VWD) in young piglets (<3 weeks). Nowadays, the virus is still circulating on most farms in Belgium, but there are no descriptions anymore of VWD. Therefore, we are interested in differences between the old and new strains. We compared the replication kinetics of the old well-studied strain VW572 (1972) and the recent isolate P412 (2020) in a susceptible continuous cell line (RPD cells) and in primary porcine respiratory epithelial cells (PoRECs). The RPD cell line was inoculated with each PHEV strain at an m.o.i. of 1 the supernatant was collected, and the cells were fixed at different time points post-inoculation. The supernatant was titrated (extracellular virus titer), and the infected cells were revealed by immunofluorescence staining and quantitated by fluorescence microscopy. We found that VW572 replicated better in the RPD cell line at earlier time points when compared to P412. Porcine respiratory epithelial cells (PoREC) were isolated, grown at air-liquid interphase in transwells and inoculated with both strains of PHEV at a virus titer of 106.6TCID50 per 200 µl either at the apical side or at the basal side of the cells. At different time points after inoculation, the transwells were fixed and stained for infected cells. VW572 preferentially infected the epithelial cells via the basolateral side of porcine nasal epithelial cells, whereas P412 preferred the apical side. These findings suggest that there has been an evolution of PHEV in its interaction with the respiratory epithelial cells. In the future, more virus strains will be enclosed and the tropism of the strains for different neuronal cell types will be examined for the change in virus neurotropism.Keywords: porcine hemagglutinating encephalomyelitis virus (PHEV), primary porcine respiratory epithelial cells (PoRECs), virus tropism, vomiting and wasting disease (VWD)
Procedia PDF Downloads 633127 Removal of Samarium in Environmental Water Samples by Modified Yeast Cells
Authors: Homayon Ahmad Panahi, Seyed Mehdi Seyed Nejad, Elham Moniri
Abstract:
A novel bio-adsorbent is fabricated by attaching a cibacron blue to yeast cells. The modified bio-sorbent has been characterized by some techniques like Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (CHN) and applied for the preconcentration and determination of samarium from aqueous water samples. The best pH value for adsorption of the brilliant crecyle blue by yeast cells- cibacron blue was 7. The sorption capacity of modified biosorbent was 18.5 mg. g⁻¹. A recovery of 95.3% was obtained for Sm(III) when eluted with 0.5 M nitric acid. The method was applied for Sm(III) preconcentration and determination in river water sample.Keywords: samarium, solid phase extraction, yeast cells, water sample, removal
Procedia PDF Downloads 2593126 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel
Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim
Abstract:
Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.Keywords: candida cells, concentration, separation, viscoelastic fluid
Procedia PDF Downloads 1983125 Increased Cytolytic Activity of Effector T-Cells against Cholangiocarcinoma Cells by Self-Differentiated Dendritic Cells with Down-Regulation of Interleukin-10 and Transforming Growth Factor-β Receptors
Authors: Chutamas Thepmalee, Aussara Panya, Mutita Junking, Jatuporn Sujjitjoon, Nunghathai Sawasdee, Pa-Thai Yenchitsomanus
Abstract:
Cholangiocarcinoma (CCA) is an aggressive malignancy of bile duct epithelial cells in which the standard treatments, including surgery, radiotherapy, chemotherapy, and targeted therapy are partially effective. Many solid tumors including CCA escape host immune responses by creating tumor microenvironment and generating immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). These cytokines can inhibit dendritic cell (DC) differentiation and function, leading to decreased activation and response of effector CD4+ and CD8+ T cells for cancer cell elimination. To overcome the effects of these immunosuppressive cytokines and to increase ability of DC to activate effector CD4+ and CD8+ T cells, we generated self-differentiated DCs (SD-DCs) with down-regulation of IL-10 and TGF-β receptors for activation of effector CD4+ and CD8+ T cells. Human peripheral blood monocytes were initially transduced with lentiviral particles containing the genes encoding GM-CSF and IL-4 and then secondly transduced with lentiviral particles containing short-hairpin RNAs (shRNAs) to knock-down mRNAs of IL-10 and TGF-β receptors. The generated SD-DCs showed up-regulation of MHC class II (HLA-DR) and co-stimulatory molecules (CD40 and CD86), comparable to those of DCs generated by convention method. Suppression of IL-10 and TGF-β receptors on SD-DCs by specific shRNAs significantly increased levels of IFN-γ and also increased cytolytic activity of DC-activated effector T cells against CCA cell lines (KKU-213 and KKU-100), but it had little effect to immortalized cholangiocytes (MMNK-1). Thus, SD-DCs with down-regulation of IL-10 and TGF-β receptors increased activation of effector T cells, which is a recommended method to improve DC function for the preparation of DC-activated effector T cells for adoptive T-cell therapy.Keywords: cholangiocarcinoma, IL-10 receptor, self-differentiated dendritic cells, TGF-β receptor
Procedia PDF Downloads 1423124 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion
Authors: Hossain A, Hossain S.
Abstract:
Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate
Procedia PDF Downloads 973123 Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells
Authors: Mahmoud M. Zakaria, Omnia F. Elmoursi, Mahmoud M. Gabr, Camelia A. AbdelMalak, Mohamed A. Ghoneim
Abstract:
Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols.Keywords: mesenchymal stem cells, insulin producing cells, conophylline protein, trichostatin-A, beta-mercaptoethanol, gene expression, immunofluorescence technique
Procedia PDF Downloads 2163122 A Novel Application of CORDYCEPIN (Cordycepssinensis Extract): Maintaining Stem Cell Pluripotency and Improving iPS Generation Efficiency
Authors: Shih-Ping Liu, Cheng-Hsuan Chang, Yu-Chuen Huang, Shih-Yin Chen, Woei-Cherng Shyu
Abstract:
Embryonic stem cells (ES) and induced pluripotnet stem cells (iPS) are both pluripotent stem cells. For mouse stem cells culture technology, leukemia inhibitory factor (LIF) was used to maintain the pluripotency of stem cells in vitro. However, LIF is an expensive reagent. The goal of this study was to find out a pure compound extracted from Chinese herbal medicine that could maintain stem cells pluripotency to replace LIF and improve the iPS generation efficiency. From 20 candidates traditional Chinese medicine we found that Cordycepsmilitaris triggered the up-regulation of stem cells activating genes (Oct4 and Sox2) expression levels in MEF cells. Cordycepin, a major active component of Cordycepsmilitaris, also could up-regulate Oct4 and Sox2 gene expression. Furthermore, we used ES and iPS cells and treated them with different concentrations of Cordycepin (replaced LIF in the culture medium) to test whether it was useful to maintain the pluripotency. The results showed higher expression levels of several stem cells markers in 10 μM Cordycepin-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryonic body formation and differentiation confirmed that 10 μM Cordycepin-containing medium was capable to maintain stem cells pluripotency after four times passages. For mechanism analysis, microarray analysis indicated extracellular matrix and Jak/Stat signaling pathway as the top two deregulated pathways. In ECM pathway, we determined that the integrin αVβ5 expression levels and phosphorylated Src levels increased after Cordycepin treatment. In addition, the phosphorylated Jak2 and phosphorylated Sat3 protein levels were increased after Cordycepin treatment and suppressed with the Jak2 inhibitor, AG490. The expression of cytokines associated with Jak2/Stat3 signaling pathway were also up-regulated by Q-PCR and ELISA assay. Lastly, we used Oct4-GFP MEF cells to test iPS generation efficiency following Cordycepin treatment. We observed that 10 Μm Cordycepin significantly increased the iPS generation efficiency in day 21. In conclusion, we demonstrated Cordycepin could maintain the pluripotency of stem cells through both of ECM and Jak2/Stat3 signaling pathway and improved iPS generation efficiency.Keywords: cordycepin, iPS cells, Jak2/Stat3 signaling pathway, molecular biology
Procedia PDF Downloads 4393121 The Comparison between bFGF and Small Molecules in Derivation of Chicken Primordial Germ Cells and Embryonic Germ Cells
Authors: Maryam Farzaneh, Seyyedeh Nafiseh Hassani, Hossein Baharvand
Abstract:
Objective: Chicken gonadal tissue has a two population such primordial germ cells (PGCs) and stromal cells (somatic cells). PGCs and embryonic germ cells (EGCs) that is a pluripotent type of PGCs in long-term culture are suitable sources for the production of chicken pluripotent stem cell lines, transgenic birds, vaccine and recombinant protein production. In general, the effect of growth factors such bFGF and mouse LIF on derivation of PGCs in vitro are important and in this study we could see the unique effect of small molecules such PD032 and SB43 as a chemical, in comparison to growth factors. Materials and Methods: After incubation of fertilized chicken egg up to 6 days and isolation of primary gonadal tissues and culture of mixed cells like PGCs and stromal cells. PGCs proliferate in the present of fetal calf serum (FCS) and small molecules and in another group bFGF, that these factors are important for PGCs culture and derivation. Somatic cells produce a multilayer feeder under the PGCs in primary culture and PGCs make a small cluster under these cells. Results: In present of small molecules and high volume of FCS (15%), the present of EGCs as a pluripotent stem cells were clear four weeks, that they had a positive immune-staining and periodic acid-Schiff staining (PAS), but in present of growth factors like bFGF without any chemicals, the present of PGCs were clear but after 7 until 10 days, there were disappear. Conclusion: Until now we have seen many researches about derivation and maintenance of chicken PGCs, in the hope of understanding the mechanisms that occur during germline development and production of a therapeutic product by transgenic birds. There are still many unknowns in this area and this project will try to have efficient conditions for identification of suitable culture medium for long-term culture of PGCs in vitro without serum and feeder cells.Keywords: chicken gonadal primordial germ cells, pluripotent stem cells, growth factors, small molecules, transgenic birds
Procedia PDF Downloads 4373120 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample
Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri
Abstract:
A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.Keywords: solid phase extraction, yeast cells, Nickl, isotherm study
Procedia PDF Downloads 2643119 The Role of Il-6-Mediated NS5ATP9 Expression in Autophagy of Liver Cancer Cells
Authors: Hongping Lu, Kelbinur Tursun, Yaru Li, Yu Zhang, Shunai Liu, Ming Han
Abstract:
Objective: To investigate whether NS5ATP9 is involved in IL-6 mediated autophagy and the relationship between IL-6 and NS5ATP9 in liver cancer cells. Methods: 1. Detect the mRNA and protein levels of Beclin 1 after HepG2 cells were treated with or without recombinant human IL-6 protein. 2. Measure and compare of the changes of autophagy-related genes with their respective control, after IL-6 was silenced or neutralized with monoclonal antibody against human IL-6. 3. HepG2 cells were incubated with 50 ng/ml of IL-6 in the presence or absence of PDTC. The expression of NS5ATP9 was analyzed by Western blot after 48 h. 4. After NS5ATP9-silenced HepG2 cells had been treated with 50 ng/ml recombinant IL-6 protein, we detected the Beclin 1 and LC3B (LC3Ⅱ/Ⅰ) expression. 5. HepG2 cells were transfected with pNS5ATP9, si-NS5ATP9, and their respective control. Total RNA was isolated from cells and analyzed for IL-6. 6. Silence or neutralization of IL-6 in HepG2 cells which has been transfected with NS5ATP9. Beclin 1 and LC3 protein levels were analyzed by Western blot. Result: 1. After HepG2 were treated with recombinant human IL-6 protein, the expression of endogenous Beclin 1 was up-regulated at mRNA and protein level, and the conversion of endogenous LC3-I to LC3-II was also increased. These results indicated that IL-6 could induce autophagy. 2. When HepG2 cells were treated with IL-6 siRNA or monoclonal antibody against human IL-6, the expression of autophagy-related genes were decreased. 3. Exogenous human IL-6 recombinant protein up-regulated NS5ATP9 via NF-κB activation. 4. The expression of Beclin 1 and LC3B was down-regulated after IL-6 treated NS5ATP9-silenced HepG2 cells. 5. NS5ATP9 could reverse regulates IL-6 expression in HepG2 cells. 6. Silence or neutralization of IL-6 attenuates NS5ATP9-induced autophagy slightly. Conclusion: Our results implied that in HCC patients, maybe the higher level of IL-6 in the serum promoted the expression of NS5ATP9 and induced autophagy in cancer cells. And the over-expression of NS5ATP9 which induced by IL-6, in turn, increased IL-6 expression, further, promotes the IL-6/NS5ATP9-mediated autophagy and affects the progression of tumor. Therefore, NS5ATP9 silence might be a potential target for HCC therapy.Keywords: autophagy, Hepatocellular carcinoma, IL-6, microenvironment, NS5ATP9
Procedia PDF Downloads 2503118 Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells
Authors: Khaled A. shady, Fagr B. Bazeed, Nashwa K. Abousamra, Ihab H. Elberawe, Ashraf E. shaalan, Mohamed A. Sobh
Abstract:
Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs.Keywords: physical activity, hematopoietic stem cells, mobilization, athletes
Procedia PDF Downloads 1193117 Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation
Authors: Mohammed Khenfouch, Fokotsa V. Molefe, Bakang M. Mothudi
Abstract:
Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells.Keywords: graphene, optoelectronics, nanohybrids, solar cells
Procedia PDF Downloads 1693116 Induction of Apoptosis by Diosmin through Interleukins/STAT and Mitochondria Mediated Pathway in Hep-2 and KB Cells
Authors: M. Rajasekar, K. Suresh
Abstract:
Diosmin is a flavonoid, most abundantly found in many citrus fruits. As a flavonoid, it possesses a multitude of biological activities including anti-hyperglycemic, anti-lipid peroxidative, anti-inflammatory, antioxidant, and anti-mutagenic properties. At this point, we established the anti-proliferative and apoptosis-inducing activities of diosmin in Hep-2 and KB cells. Diosmin has cytotoxic effects through inhibiting cellular proliferation of Hep-2 and KB cells, which leads to the induction of apoptosis, as apparent by an increase in the fraction of cells in the sub-G1phase of the cell cycle. Results exposed that inhibition of cell proliferation is associated with regulation of the Interleukins/STAT pathway. In addition, Diosmin treatment with Hep-2 and KB cells actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. And also an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and shifting the balance in favor of apoptosis. These observations conclude that Diosmin induce apoptosis via Interleukins /STAT-mediated pathway.Keywords: diosmin, apoptosis, antioxidant, STAT pathway
Procedia PDF Downloads 3283115 Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells
Authors: Sharon Yunger, Liat Altman, Yuval Garini, Yaron Shav-Tal
Abstract:
Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression.Keywords: cell cycle, living cells, nucleus, transcription
Procedia PDF Downloads 3133114 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol
Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee
Abstract:
In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.Keywords: apoptosis, cancer, G1 arrest, panaxydol
Procedia PDF Downloads 3223113 Lipid-polymer Nanocarrier Platform Enables X-Ray Induced Photodynamic Therapy against Human Colorectal Cancer Cells
Authors: Rui Sang, Fei Deng, Alexander Engel, Ewa M. Goldys, Wei Deng
Abstract:
In this study, we brought together X-ray induced photodynamic therapy (X-PDT) and chemo-drug (5-FU) for the treatment on colorectal cancer cells. This was achieved by developing a lipid-polymer hybrid nanoparticle delivery system (FA-LPNPs-VP-5-FU). It was prepared by incorporating a photosensitizer (verteporfin), chemotherapy drug (5-FU), and a targeting moiety (folic acid) into one platform. The average size of these nanoparticles was around 100 nm with low polydispersity. When exposed to clinical doses of 4 Gy X-ray radiation, FA-LPNPs-VP-5-FU generated sufficient amounts of reactive oxygen species, triggering the apoptosis and necrosis pathway of cancer cells. Our combined X-PDT and chemo-drug strategy was effective in inhibiting cancer cells’ growth and proliferation. Cell cycle analyses revealed that our treatment induced G2/M and S phase arrest in HCT116 cells. Our results indicate that this combined treatment provides better antitumour effect in colorectal cancer cells than each of these modalities alone. This may offer a novel approach for effective colorectal cancer treatment with reduced off-target effect and drug toxicity.Keywords: pdt, targeted lipid-polymer nanoparticles, verteporfin, colorectal cancer
Procedia PDF Downloads 773112 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice
Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi
Abstract:
Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids
Procedia PDF Downloads 713111 Simulation of Remove the Fouling on the in vivo By Using MHD
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form.Keywords: MHD, fouling, in-vivo, blood clots, simulation
Procedia PDF Downloads 4693110 Sitagliptin-AntiCD4 Mab Conjugated T Cell Targeting Therapy for the Effective Treatment of Type I Diabetes
Authors: T. Mahesh, M. K. Samanta
Abstract:
Antibody dug conjugate (ADC’s) concept is a less explored and more trustable for the treatment of Type 1 diabetes (T1D). T1D is thought to arise from selective immunologically mediated destruction of the insulin- producing β-cells in the pancreatic islets of Langerhans with consequent insulin deficiency. It is evident that type 1 diabetes can be conquered, by 1) to stop immune destruction of βcells, 2) to replace or regenerate β-cells, and 3) to preserve β-cell function and mass. Many studies found that the regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Immune tolerance is liable for the activation of the Th1 response. The important role of Th1 response in pathology of T1D entails the depletion of CD4+ T cells, which initiated the use of anti-CD4 monoclonal antibodies (mAbs) against CD4+ T cells to interfere with induction of T1D.Insulin is regulated by Glucagon-Like Peptide-1 hormone (GLP-1) which also stimulates β-cells proliferation as the half-life of GLP-1 harmone is less due to rapid degradation by DPP-IV enzyme an alternative DPP-IV-inhibitors can increase the half-life of GLP-1 through which it conquers the replacement and reserve β-cells mass. Thus in the present study Anti-CD4 mAb was conjugated with Sitagliptin which is a DPP-IV inhibitor Drug loaded in Nanoparticles through Sulfo-MBS cross-linkers. The above study can be an effective approach for treatment to overcome the Passive subcutaneous insulin therapy.Keywords: antibody drug conjugates, anti-CD4 Mab, DPP IV inhibitors, GLP-1
Procedia PDF Downloads 3913109 Juvenile Paget’s Disease(JPD) of Bone
Authors: Aftab Ahmed, Ghulam Mehboob
Abstract:
The object of presentation is to highlight the importance of condition which is a very rare genetic disorder although Paget’s disease is common but its juvenile type is very rare and a late presentation due to very slow onset and lack of earlier standard management. We present a case of 25 years old male with a chronic history of bone pain and a slow onset of mild swelling, later on diagnosed as juvenile Paget disease of bone. Rarity of this condition with inaccessibility for standard health treatment can lead to a significant delay in presentation and its management. There have been 50 reported cases worldwide according to Genetic Home Reference. There is increased osteoclastic activity along with osteoblastic activity related to gene alteration and osteoprotegrin deficiency. Morbidity of disease is very significant which lead children to become immobilize.Keywords: juvenile, Paget’s disease, bone, Northern Area of Pakistan
Procedia PDF Downloads 3293108 Discover a New Technique for Cancer Recognition by Analysis and Determination of Fractal Dimension Images in Matlab Software
Authors: Saeedeh Shahbazkhany
Abstract:
Cancer is a terrible disease that, if not diagnosed early, therapy can be difficult while it is easily medicable if it is diagnosed in early stages. So it is very important for cancer diagnosis that medical procedures are performed. In this paper we introduce a new method. In this method, we only need pictures of healthy cells and cancer cells. In fact, where we suspect cancer, we take a picture of cells or tissue in that area, and then take some pictures of the surrounding tissues. Then, fractal dimension of images are calculated and compared. Cancer can be easily detected by comparing the fractal dimension of images. In this method, we use Matlab software.Keywords: Matlab software, fractal dimension, cancer, surrounding tissues, cells or tissue, new method
Procedia PDF Downloads 3543107 Genotoxic and Cytotoxic Effects of Methidathion Pesticide
Authors: Mohammad Y. Alfaifi
Abstract:
Methidathion (MTD) (Trade name Supracide®) is a non-systemic organophosphorus insecticide used intensively worldwide including Saudi Arabia. However, there is a lack in published studies about it's genotoxicity. In this study we evaluated MTD toxicity in rat bone marrow cells (in vivo) and in lymphocytes (in vitro) using different doses based on LD50. MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells were recorded in rat's bone marrow samples. CA, MI (number of cells undergoing mitosis) necrotic, and apoptotic cells recorded in lymphocytes. Results showed that there was a slight increase in the frequency of micronucleated bone marrow cells. However, no structural chromosomal aberrations were detected in vivo or in vitro. On the other hand, the results showed significant increase in necrotic and apoptotic cells following MTD administration in a dose-dependent manner comparing to positive and negative control groups. In light of these results, MTD can be considered highly cytotoxic and moderate genotoxic, and precaution should be taken when using MTD.Keywords: methidathion, micronucleus, NDI, NDCI, toxicity, chromosomal aberrations
Procedia PDF Downloads 4133106 Fluoride-Induced Stress and Its Association with Bone Developmental Pathway in Osteosarcoma Cells
Authors: Deepa Gandhi, Pravin K. Naoghare, Amit Bafana, Krishnamurthi Kannan, Saravanadevi Sivanesana
Abstract:
Oxidative stress is known to depreciate normal functioning of osteoblast cells. Present study reports oxidative/inflammatory signatures in fluoride exposed human osteosarcoma (HOS) cells and its possible association with the genes involved in bone developmental pathway. Microarray analysis was performed to understand the possible molecular mechanisms of stress-mediated bone lose in HOS cells. Cells were chronically exposed with sub-lethal concentration of fluoride. Global gene expression is profiling revealed 34 up regulated and 2598 down-regulated genes, which were associated with several biological processes including bone development, osteoblast differentiation, stress response, inflammatory response, apoptosis, regulation of cell proliferation. Microarray data were further validated through qRT-PCR and western blot analyses using key representative genes. Based on these findings, it can be proposed that chronic exposure of fluoride may impair bone development via oxidative and inflammatory stress. The present finding also provides important biological clues, which will be helpful for the development of therapeutic targets against diseases related bone.Keywords: bone, HOS cells, microarray, stress
Procedia PDF Downloads 3793105 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection
Authors: Latef M. Ali, Farah A. Abed
Abstract:
In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation
Procedia PDF Downloads 743104 Relative Entropy Used to Determine the Divergence of Cells in Single Cell RNA Sequence Data Analysis
Authors: An Chengrui, Yin Zi, Wu Bingbing, Ma Yuanzhu, Jin Kaixiu, Chen Xiao, Ouyang Hongwei
Abstract:
Single cell RNA sequence (scRNA-seq) is one of the effective tools to study transcriptomics of biological processes. Recently, similarity measurement of cells is Euclidian distance or its derivatives. However, the process of scRNA-seq is a multi-variate Bernoulli event model, thus we hypothesize that it would be more efficient when the divergence between cells is valued with relative entropy than Euclidian distance. In this study, we compared the performances of Euclidian distance, Spearman correlation distance and Relative Entropy using scRNA-seq data of the early, medial and late stage of limb development generated in our lab. Relative Entropy is better than other methods according to cluster potential test. Furthermore, we developed KL-SNE, an algorithm modifying t-SNE whose definition of divergence between cells Euclidian distance to Kullback–Leibler divergence. Results showed that KL-SNE was more effective to dissect cell heterogeneity than t-SNE, indicating the better performance of relative entropy than Euclidian distance. Specifically, the chondrocyte expressing Comp was clustered together with KL-SNE but not with t-SNE. Surprisingly, cells in early stage were surrounded by cells in medial stage in the processing of KL-SNE while medial cells neighbored to late stage with the process of t-SNE. This results parallel to Heatmap which showed cells in medial stage were more heterogenic than cells in other stages. In addition, we also found that results of KL-SNE tend to follow Gaussian distribution compared with those of the t-SNE, which could also be verified with the analysis of scRNA-seq data from another study on human embryo development. Therefore, it is also an effective way to convert non-Gaussian distribution to Gaussian distribution and facilitate the subsequent statistic possesses. Thus, relative entropy is potentially a better way to determine the divergence of cells in scRNA-seq data analysis.Keywords: Single cell RNA sequence, Similarity measurement, Relative Entropy, KL-SNE, t-SNE
Procedia PDF Downloads 3403103 Using Baculovirus Expression Vector System to Express Envelop Proteins of Chikungunya Virus in Insect Cells and Mammalian Cells
Authors: Tania Tzong, Chao-Yi Teng, Tzong-Yuan Wu
Abstract:
Currently, Chikungunya virus (CHIKV) transmitted to humans by Aedes mosquitoes has distributed from Africa to Southeast Asia, South America, and South Europe. However, little is known about the antigenic targets for immunity, and there are no licensed vaccines or specific antiviral treatments for the disease caused by CHIKV. Baculovirus has been recognized as a novel vaccine vector with attractive characteristic features of an optional vaccine delivery vehicle. This approach provides the safety and efficacy of CHIKV vaccine. In this study, bi-cistronic recombinant baculoviruses vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP were produced. Both recombinant baculovirus can express EGFP reporter gene in insect cells to facilitate the recombinant virus isolation and purification. Examination of vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP showed that this recombinant baculovirus could induce syncytium formation in insect cells. Unexpectedly, the immunofluorescence assay revealed the expression of E1 and E2 of CHIKV structural proteins in insect cells infected by vAc-CMV-CHIKV26S-Rhir-EGFP. This result may imply that the CMV promoter can induce the transcription of CHIKV26S in insect cells. There are also E1 and E2 expression in mammalian cells transduced by vAc-CMV-CHIKV26S-Rhir-EGFP and vAc-CMV-pH-CHIKV26S-Lir-EGFP. The expression of E1 and E2 proteins of insect and mammalian cells was validated again by Western blot analysis. The vector construction with dual tandem promoters, which is polyhedrin and CMV promoter, has higher expression of the E1 and E2 of CHIKV structural proteins than the vector construction with CMV promoter only. Most of the E1 and E2 proteins expressed in mammalian cells were glycosylated. In the future, the expression of structural proteins of CHIKV in mammalian cells is expected can form virus-like particle, so it could be used as a vaccine for chikungunya virus.Keywords: chikungunya virus, virus-like particle, vaccines, baculovirus expression vector system
Procedia PDF Downloads 424