Search results for: microorganisms detection
3992 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1253991 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters
Authors: S. Ghasemi, K. Khorasani
Abstract:
In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault
Procedia PDF Downloads 4383990 Functional Variants Detection by RNAseq
Authors: Raffaele A. Calogero
Abstract:
RNAseq represents an attractive methodology for the detection of functional genomic variants. RNAseq results obtained from polyA+ RNA selection protocol (POLYA) and from exonic regions capturing protocol (ACCESS) indicate that ACCESS detects 10% more coding SNV/INDELs with respect to POLYA. ACCESS requires less reads for coding SNV detection with respect to POLYA. However, if the analysis aims at identifying SNV/INDELs also in the 5’ and 3’ UTRs, POLYA is definitively the preferred method. No particular advantage comes from ACCESS or POLYA in the detection of fusion transcripts.Keywords: fusion transcripts, INDEL, RNA-seq, WES, SNV
Procedia PDF Downloads 2903989 Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code
Authors: M. Y. Kang, Euntaek Yoon, H. D. Choi
Abstract:
To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source.Keywords: attenuation, EXVol, detection efficiency, volume source
Procedia PDF Downloads 1883988 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4643987 Effect of Synbiotics on Rats' Intestinal Microbiota
Authors: Da Yoon Yu, Jeong A. Kim, In Sung Kim, Yeon Hee Hong, Jae Young Kim, Sang Suk Lee, Sung Chan Kim, So Hui Choe, In Soon Choi, Kwang Keun Cho
Abstract:
The present study was conducted to identify the effects of synbiotics composed of lactic acid (LA) bacteria (LAB) and sea tangle on rat’s intestinal microorganisms and anti-obesity effects. The experiment was conducted for six weeks using an 8-week old male rat as experiment animals and the experimental design was to use six treatments groups of 4 repetitions using three mice per repetition. The treatment groups were organized into a normal fat diet control (NFC), a high fat (HF) diet control (HFC), a prebiotic 0% treatment (HF+LA+sea tangle 0%, ST0), a prebiotic 5% treatment (HF+LA+sea tangle 5%, ST5), a prebiotic 10% treatment (HF+LA+sea tangle 10%, ST10), and a prebiotic 15% treatment group (HF+LA+sea tangle 15%, ST15) to conduct experiments with various levels of prebiotics. According to the results of the experiment, the NFC group showed the highest daily weight gain (22.34g) and the ST0 group showed the lowest daily weight gain (19.41g). However, weight gains during the entire experimental period were the highest in the HFC group (475.73g) and the lowest in the ST0 group (454.23g). Feed efficiency was the highest in the HFC group (0.20). Treatment with synbiotics composed of LAB and sea tangle suppressed weight increases due to HF diet and reduced feed efficiency. Intestinal microorganisms were identified through pyrosequncing and according to the results, Firmicutes phylum (approximately 60%) and Bacteroidetes phylum (approximately 30%) accounted for approximately 90% or more of intestinal microorganisms in all of the treatment groups indicating these bacteria are dominating in the intestines. Firmicutes that is related to weight increases accounted for 64.96% of microorganisms in the NFC group, 75.32% in the HFC group, 59.51% in the ST0 group, 61.29% in the ST5 group, 49.91% in the ST10 group, and 39.65% in the ST15 group. Therefore, Firmicutes showed the highest share the HFC group that showed high weight gains and the lowest share in the group treated with mixed synbiotics composed of LAB and sea tangle. Bacteroidetes that is related to weight gain inhibition accounted for 32.12% of microorganisms in the NFC group, and HFC group 21.57%, ST0 group 37.66%, ST5 group 34.92%, ST10 group 44.46%, and ST15 group 53.22%. Therefore, the share of Bacteroidetes was the lowest in the HFC group with no addition of synbiotics and increased along with the level of treatment with synbiotics. Changes in blood components were not significantly different among the groups and SCFA yields were shown to be higher in groups treated with synbiotics than in groups not added with synbiotics. Through the present study, it was shown that the supply of synbiotics composed of LAB and sea tangle increased feed intake but led to weight losses and that the intake of synbiotics composed of LAB and sea tangle had anti-obesity effects due to decreases in Firmicutes which are microorganisms related to weight gains and increases in Bacteroidetes which are microorganisms related to weight losses. Therefore, synbiotics composed of LAB and sea tangle are considered to have the effect to prevent metabolic disorders in the rat.Keywords: bacteroidetes, firmicutes, intestinal microbiota, lactic acid, sea tangle, synbiotics
Procedia PDF Downloads 4033986 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN
Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu
Abstract:
Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.Keywords: DDoS detection, EMD, relative entropy, SDN
Procedia PDF Downloads 3413985 Some Extreme Halophilic Microorganisms Produce Extracellular Proteases with Long Lasting Tolerance to Ethanol Exposition
Authors: Cynthia G. Esquerre, Amparo Iris Zavaleta
Abstract:
Extremophiles constitute a potentially valuable source of proteases for the development of biotechnological processes; however, the number of available studies in the literature is limited compared to mesophilic counterparts. Therefore, in this study, Peruvian halophilic microorganisms were characterized to select suitable proteolytic strains that produce active proteases under exigent conditions. Proteolysis was screened using the streak plate method with gelatin or skim milk as substrates. After that, proteolytic microorganisms were selected for phenotypic characterization and screened by a semi-quantitative proteolytic test using a modified method of diffusion agar. Finally, proteolysis was evaluated using partially purified extracts by ice-cold ethanol precipitation and dialysis. All analyses were carried out over a wide range of NaCl concentrations, pH, temperature and substrates. Of a total of 60 strains, 21 proteolytic strains were selected, of these 19 were extreme halophiles and 2 were moderates. Most proteolytic strains demonstrated differences in their biochemical patterns, particularly in sugar fermentation. A total of 14 microorganisms produced extracellular proteases, 13 were neutral, and one was alkaline showing activity up to pH 9.0. Proteases hydrolyzed gelatin as the most specific substrate. In general, catalytic activity was efficient under a wide range of NaCl (1 to 4 M NaCl), temperature (37 to 55 °C) and after an ethanol exposition performed at -20 °C for 24 hours. In conclusion, this study reported 14 candidates extremely halophiles producing extracellular proteases capable of being stable and active on a wide range of NaCl, temperature and even long lasting ethanol exposition.Keywords: biotechnological processes, ethanol exposition, extracellular proteases, extremophiles
Procedia PDF Downloads 2893984 Subjective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images
Authors: Emhimed Saffor
Abstract:
In this paper, the problem of edge detection in digital images is considered. Three methods of edge detection based on mathematical morphology algorithm were applied on two sets (Brain and Chest) CT images. 3x3 filter for first method, 5x5 filter for second method and 7x7 filter for third method under MATLAB programming environment. The results of the above-mentioned methods are subjectively evaluated. The results show these methods are more efficient and satiable for medical images, and they can be used for different other applications.Keywords: CT images, Matlab, medical images, edge detection
Procedia PDF Downloads 3393983 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data
Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin
Abstract:
The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test
Procedia PDF Downloads 3043982 Impact of Environmental Stressors on Microbial Community Dynamics and Ecosystem Functioning: Implications for Bioremediation and Restoration Strategies
Authors: Nazanin Nikanmajd
Abstract:
Microorganisms are essential for influencing environmental processes, such as nutrient cycling, pollutant breakdown, and ecosystem well-being. Recent developments in high-throughput sequencing technologies and metagenomic methods have given us fresh understandings about the range and capabilities of microorganisms in different settings. This research examines how environmental stressors like climate change, pollution, and habitat degradation affect the composition and roles of microbial communities in soil and water ecosystems. We show that human-caused disruptions change the makeup of microbial communities, causing changes in important metabolic pathways for biogeochemical processes. More precisely, we pinpoint important microbial groups that show resistance or susceptibility to certain stress factors, emphasizing their possible uses in bioremediation and ecosystem rehabilitation. The results highlight the importance of adopting a holistic approach to comprehend microbial changes in evolving environments, impacting sustainable environmental conservation and management strategies. This research helps develop new solutions to reduce the impacts of environmental degradation on microbial ecosystem services by understanding the intricate relationships between microorganisms and their surroundings.Keywords: environmental microbiology, microbial communities, climate change, pollution, bioremediation, metagenomics, ecosystem services, ecosystem restoration
Procedia PDF Downloads 143981 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.Keywords: spectral index, shadow detection, remote sensing images, World-View 2
Procedia PDF Downloads 5413980 An Architectural Model for APT Detection
Authors: Nam-Uk Kim, Sung-Hwan Kim, Tai-Myoung Chung
Abstract:
Typical security management systems are not suitable for detecting APT attack, because they cannot draw the big picture from trivial events of security solutions. Although SIEM solutions have security analysis engine for that, their security analysis mechanisms need to be verified in academic field. Although this paper proposes merely an architectural model for APT detection, we will keep studying on correlation analysis mechanism in the future.Keywords: advanced persistent threat, anomaly detection, data mining
Procedia PDF Downloads 5313979 Lane Detection Using Labeling Based RANSAC Algorithm
Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung
Abstract:
In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping
Procedia PDF Downloads 2483978 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images
Authors: Gherbi Nabil
Abstract:
Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM
Procedia PDF Downloads 263977 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime
Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.Keywords: data fusion, round types speed hump, speed hump detection, surface filter
Procedia PDF Downloads 5143976 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 3563975 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 2543974 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips
Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek
Abstract:
We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy
Procedia PDF Downloads 7243973 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 1463972 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images
Authors: Maher un Nisa, Ahsan Khawaja
Abstract:
Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.Keywords: color fundus, retinal images, ultra-widefield, vessel detection
Procedia PDF Downloads 4493971 A Review of Pothole Detection Using Different Technologies
Authors: Ashwini Jarali, Prajwal Lalpotu, Shreya Jadhav, Snehal Kavathekar, Sanskruti Lad
Abstract:
This paper reviews recent advancements in pothole detection technologies, comparing various methods, including deep learning models like YOLO (You Only Look Once) and SSD (Single Shot Detector) and UAV-based systems with multispectral imaging. YOLO v8 Nano emerges as a highly effective model, balancing speed and accuracy in real-time detection, while SSD demonstrates superior precision in certain scenarios. Additionally, UAVs enhance detection by providing early insights into asphalt damage. Image processing techniques and manually labeled datasets are also employed to improve model training and accuracy. The paper evaluates the strengths and limitations of these methods, examining factors like computational efficiency, environmental adaptability, and real-time application. It further explores future directions in this field, focusing on optimizing detection techniques and integrating advanced sensors to enhance road safety and maintenance.Keywords: YOLO(You Look Only Once), Pothole Detection, YOLOV8, YOLOV5
Procedia PDF Downloads 83970 Detection of Clipped Fragments in Speech Signals
Authors: Sergei Aleinik, Yuri Matveev
Abstract:
In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.Keywords: clipping, clipped signal, speech signal processing, digital signal processing
Procedia PDF Downloads 3973969 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3483968 Automatic Change Detection for High-Resolution Satellite Images of Urban and Suburban Areas
Authors: Antigoni Panagiotopoulou, Lemonia Ragia
Abstract:
High-resolution satellite images can provide detailed information about change detection on the earth. In the present work, QuickBird images of spatial resolution 60 cm/pixel and WorldView images of resolution 30 cm/pixel are utilized to perform automatic change detection in urban and suburban areas of Crete, Greece. There is a relative time difference of 13 years among the satellite images. Multiindex scene representation is applied on the images to classify the scene into buildings, vegetation, water and ground. Then, automatic change detection is made possible by pixel-per-pixel comparison of the classified multi-temporal images. The vegetation index and the water index which have been developed in this study prove effective. Furthermore, the proposed change detection approach not only indicates whether changes have taken place or not but also provides specific information relative to the types of changes. Experimentations with other different scenes in the future could help optimize the proposed spectral indices as well as the entire change detection methodology.Keywords: change detection, multiindex scene representation, spectral index, QuickBird, WorldView
Procedia PDF Downloads 1413967 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation
Authors: Pavel Chmelar, Martin Dobrovolny
Abstract:
Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map
Procedia PDF Downloads 4373966 A Background Subtraction Based Moving Object Detection Around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering
Procedia PDF Downloads 6203965 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Authors: Xinyi Zhao, Furong Tian
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins
Procedia PDF Downloads 2023964 Virucidal, Bactericidal and Fungicidal Efficiency of Dry Microfine Steam on Innate Surfaces
Authors: C. Recchia, M. Bourel, B. Recchia
Abstract:
Microorganisms (viruses, bacteria, fungi) are responsible for most communicable diseases, threatening human health. For domestic use, chemical agents are often criticized because of their potential dangerousness, and natural solutions are needed. Application of the “dry microfine steam” (DMS) technology was tested on a selection of common pathogens (SARS-CoV-2, enterovirus EV-71, human coronavirus 229E, E. coli, S. aureus, C. albicans), on different innate surfaces, for 5 to 10 seconds. Quantification of the remaining pathogens was performed, and the reduction rates ranged from 99.8% (S. aureus on plastic) to over 99.999%. DMS showed high efficacy in the elimination of common microorganisms and could be seen as a natural alternative to chemical agents to improve domestic hygiene.Keywords: steam, SARS-CoV-2, bactericidal, virucidal, fungicidal, sterilization
Procedia PDF Downloads 1663963 Effects of Sacubitril and Valsartan on Gut Microbiome
Authors: Wei-Ju Huang, Hung-Pin Hsu
Abstract:
[Background] In congestive heart failure (CHF), it has always been the principle of clinical treatment to control the water retention mechanism in the body to prevent excessive fluid retention. Early control of sympathetic nerves, Renin-Angiotensin-Aldosterone system (RAA system, RAAS), or strengthening of Atrial Natriuretic Peptide (ANP) was the point. In RAA system, related hormones, such as angiotensin, or enzymes in the pathway, such as ACE-I, can be used with corresponding inhibitors to reduce water content.[Aim] In recent years, clinical studies have pointed out that if different mechanisms are combined, the control effect seems to be better. For example, recent studies showed that ENTRESTO, a combination of Sacubitril and Valsartan, is a good new drug for CHF. Sacubitril is a prodrug. After activation, it can inhibit neprilysin and act as a neprilysin inhibitor (ARNI) to reduce the breakdown of natriuretic peptides(ANP). Valsartan is a kind of angiotensin receptor blocker (ARB), both of which are used to treat heart failure at the same time, have excellent curative effects.[Materials and Methods] Considering the side effects of this drug, coughing and a few cases of diarrhea were observed. However, the effect of this drug on the patient's intestinal tract has not been confirmed. On the other hand, studies have pointed out that ANP supplement can improve the CHF and increase the inhibitory effect on cancer cells. Therefore, the purpose of this study is to use a special microbial detection method to prove that whether oral drugs have an effect on microorganisms.The experimental method uses Nissui Compact Dry to observe the situation in different types of microorganisms. After the drug is dissolved in water, it is implanted in a petri dish, and the presence of different microorganisms is detected through different antibody reactions to confirm whether the drug has some toxicology in the gut.[Results and Discussion]From the above experimental results, it can be known that among the effects of Sacubitril and Valsartan on the basic microbial flora of the human body, low doses had no significant effect on Escherichia coli or intestinal bacteria. If Sacubitril or Valsartan with a high concentration of 3mg/ml is used alone or under the stimulation of a high concentration of the two drugs, it has a significant inhibitory effect on Escherichia coli. However, in terms of the effect on intestinal bacteria, high concentration of Sacubitril has a more significant inhibitory effect on intestinal bacteria, while high concentration of Valsartan has a less significant inhibitory effect on intestinal bacteria. The inhibitory effect of the combination of the two drugs on intestinal bacteria is also less significant.[Conclusion]The results of this study can be used as a further reference for the possible side effects of the clinical use of Sacubitril and Valsartan on the intestinal tract of patients,Keywords: sacubitril, valsartan, entresto, congestive heart failure (CHF)
Procedia PDF Downloads 74