Search results for: mathematical optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4636

Search results for: mathematical optimization

4546 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 148
4545 Variants of Mathematical Induction as Strong Proof Techniques in Theory of Computing

Authors: Ahmed Tarek, Ahmed Alveed

Abstract:

In the theory of computing, there are a wide variety of direct and indirect proof techniques. However, mathematical induction (MI) stands out to be one of the most powerful proof techniques for proving hypotheses, theorems, and new results. There are variations of mathematical induction-based proof techniques, which are broadly classified into three categories, such as structural induction (SI), weak induction (WI), and strong induction (SI). In this expository paper, several different variants of the mathematical induction techniques are explored, and the specific scenarios are discussed where a specific induction technique stands out to be more advantageous as compared to other induction strategies. Also, the essential difference among the variants of mathematical induction are explored. The points of separation among mathematical induction, recursion, and logical deduction are precisely analyzed, and the relationship among variations of recurrence relations, and mathematical induction are being explored. In this context, the application of recurrence relations, and mathematical inductions are considered together in a single framework for codewords over a given alphabet.

Keywords: alphabet, codeword, deduction, mathematical, induction, recurrence relation, strong induction, structural induction, weak induction

Procedia PDF Downloads 145
4544 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh

Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun

Abstract:

Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.

Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization

Procedia PDF Downloads 147
4543 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method

Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko

Abstract:

The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.

Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion

Procedia PDF Downloads 274
4542 Bounded Solution Method for Geometric Programming Problem with Varying Parameters

Authors: Abdullah Ali H. Ahmadini, Firoz Ahmad, Intekhab Alam

Abstract:

Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work.

Keywords: varying parameters, geometric programming problem, bounded solution method, system reliability optimization

Procedia PDF Downloads 116
4541 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review

Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari

Abstract:

In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.

Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)

Procedia PDF Downloads 376
4540 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 259
4539 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 52
4538 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability

Procedia PDF Downloads 38
4537 Supply Chain Optimization for Silica Sand in a Glass Manufacturing Company

Authors: Ramon Erasmo Verdin Rodriguez

Abstract:

Many has been the ways that historically the managers and gurus has been trying to get closer to the perfect supply chain, but since this topic is so vast and very complex the bigger the companies are, the duty has not been certainly easy. On this research, you are going to see thru the entrails of the logistics that happens at a glass manufacturing company with the number one raw material of the process that is the silica sand. After a very quick passage thru the supply chain, this document is going to focus on the way that raw materials flow thru the system, so after that, an analysis and research can take place to improve the logistics. Thru Operations Research techniques, it will be analyzed the current scheme of distribution and inventories of raw materials at a glass company’s plants, so after a mathematical conceptualization process, the supply chain could be optimized with the purpose of reducing the uncertainty of supply and obtaining an economic benefit at the very end of this research.

Keywords: inventory management, operations research, optimization, supply chain

Procedia PDF Downloads 305
4536 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 125
4535 Modeling and Optimization of Micro-Grid Using Genetic Algorithm

Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi

Abstract:

This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.

Keywords: micro-grid, optimization, genetic algorithm, MG

Procedia PDF Downloads 485
4534 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance

Authors: Qian Zhang, Dongkai Shen, Yan Shi

Abstract:

A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.

Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design

Procedia PDF Downloads 582
4533 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm

Procedia PDF Downloads 412
4532 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 57
4531 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 234
4530 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 546
4529 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering

Procedia PDF Downloads 690
4528 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 68
4527 Review on Optimization of Drinking Water Treatment Process

Authors: M. Farhaoui, M. Derraz

Abstract:

In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and, in consequence, optimize the of the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).

Keywords: coagulation process, optimization, turbidity removal, water treatment

Procedia PDF Downloads 400
4526 Engineering Optimization Using Two-Stage Differential Evolution

Authors: K. Y. Tseng, C. Y. Wu

Abstract:

This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.

Keywords: differential evolution, Truss structure optimization, optimal chiller loading, modified binary differential evolution

Procedia PDF Downloads 144
4525 Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene

Authors: Aman Sharma, Sonali Sengupta

Abstract:

The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results.

Keywords: acquisition function, Bayesian optimization, desulfurization, kinetics, thiophene

Procedia PDF Downloads 161
4524 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem

Authors: Dávid Csercsik, Péter Kádár

Abstract:

In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.

Keywords: optimization, MATLAB, quadratic programming, economic dispatch

Procedia PDF Downloads 528
4523 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 300
4522 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 423
4521 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 307
4520 Optimization of Passive Vibration Damping of Space Structures

Authors: Emad Askar, Eldesoky Elsoaly, Mohamed Kamel, Hisham Kamel

Abstract:

The objective of this article is to improve the passive vibration damping of solar array (SA) used in space structures, by the effective application of numerical optimization. A case study of a SA is used for demonstration. A finite element (FE) model was created and verified by experimental testing. Optimization was then conducted by implementing the FE model with the genetic algorithm, to find the optimal placement of aluminum circular patches, to suppress the first two bending mode shapes. The results were verified using experimental testing. Finally, a parametric study was conducted using the FE model where patch locations, material type, and shape were varied one at a time, and the results were compared with the optimal ones. The results clearly show that through the proper application of FE modeling and numerical optimization, passive vibration damping of space structures has been successfully achieved.

Keywords: damping optimization, genetic algorithm optimization, passive vibration damping, solar array vibration damping

Procedia PDF Downloads 432
4519 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure

Authors: Rimmy Yadav, Avtar Singh

Abstract:

—Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.

Keywords: ant colony optimization, link failure, prim’s algorithm, shortest path

Procedia PDF Downloads 376
4518 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 615
4517 Mathematical Modeling of District Cooling Systems

Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari

Abstract:

District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.

Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization

Procedia PDF Downloads 180