Search results for: least squares method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19124

Search results for: least squares method

19034 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine

Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui

Abstract:

This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.

Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator

Procedia PDF Downloads 288
19033 An Empirical Examination on the Relationships between Organizational Justice, Affective Commitment and Absenteeism

Authors: Emine Öğüt, Mehtap Öztürk, Adem Öğüt

Abstract:

Affective commitment is defined as a strong belief in and acceptance of the organization’s goals and values. Organizational justice is an antecedent of the organizational commitment and it has the potential to create powerful benefits for organizations and employees alike. When perceived unfairness among employees increases, affective commitment decreases and absenteeism increases accordingly. In this research, relationships between organizational justice perception, affective commitment and absenteeism is analysed. In this regard, a field study has been conducted over the physicians working in the hospitals of the Health Ministry and University Hospitals in the province of Konya. The partial least squares (PLS) method is used to analyse the survey data. The findings of the research shows that there is a positive statistically significant relationship between organizational justice perception and affective commitment while there is a negative statistically significant relationship between organizational justice and absenteeism.

Keywords: organizational justice, affective commitment, absenteeism, healthcare management

Procedia PDF Downloads 484
19032 Marketing Research and Analysis Improvement Effect on Production

Authors: Mina Zaky Sarofim Zaky

Abstract:

Experiential marketing is a form of marketing that offers a unique integration of experiential and entertainment elements into a product or service. Experiential marketing is defined as an unforgettable experience that penetrates the customer's mind. Customer satisfaction is also defined as the emotional response to the experience provided with the purchased product or service. Experiential marketing activities can, therefore, affect the level of customer satisfaction and loyalty. In this context, the study aims to determine the relationship between experiential marketing, customer satisfaction and customer loyalty in cosmetic products in Konya. The least squares method (PLS) was used to analyze the research data. Existing research has shown that experiential marketing is a significant predictor of customer satisfaction and customer loyalty, and that experiential marketing has a positive impact on customer satisfaction and customer loyalty.

Keywords: internet, marketing, tourism, tourism management corporate responsibility, employee organizational performance, internal marketing, internal customer experiential marketing, customer satisfaction, customer loyalty, social sciences

Procedia PDF Downloads 46
19031 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 224
19030 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 129
19029 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 554
19028 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 361
19027 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution

Authors: Fatma Zehra Doğru, Olcay Arslan

Abstract:

In this paper, we propose alternative robust estimators for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators.

Keywords: burr xii distribution, robust estimator, m-estimator, least squares

Procedia PDF Downloads 428
19026 Family Firms Performance: Examining the Impact of Digital and Technological Capabilities using Partial Least Squares Structural Equation Modeling and Necessary Condition Analysis

Authors: Pedro Mota Veiga

Abstract:

This study comprehensively evaluates the repercussions of innovation, digital advancements, and technological capabilities on the operational performance of companies across fifteen European Union countries following the initial wave of the COVID-19 pandemic. Drawing insights from longitudinal data sourced from the 2019 World Bank business surveys and subsequent 2020 World Bank COVID-19 follow-up business surveys, our extensive examination involves a diverse sample of 5763 family businesses. In exploring the relationships between these variables, we adopt a nuanced approach to assess the impact of innovation and digital and technological capabilities on performance. This analysis unfolds along two distinct perspectives: one rooted in necessity and the other insufficiency. The methodological framework employed integrates partial least squares structural equation modeling (PLS-SEM) with condition analysis (NCA), providing a robust foundation for drawing meaningful conclusions. The findings of the study underscore a positive influence on the performance of family firms stemming from both technological capabilities and digital advancements. Furthermore, it is pertinent to highlight the indirect contribution of innovation to enhanced performance, operating through its impact on digital capabilities. This research contributes valuable insights to the broader understanding of how innovation, coupled with digital and technological capabilities, can serve as pivotal factors in shaping the post-COVID-19 landscape for businesses across the European Union. The intricate analysis of family businesses, in particular adds depth to the comprehension of the dynamics at play in diverse economic contexts within the European Union.

Keywords: digital capabilities, technological capabilities, family firms performance, innovation, NCA, PLS-SEM

Procedia PDF Downloads 63
19025 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 360
19024 Geospatial Curve Fitting Methods for Disease Mapping of Tuberculosis in Eastern Cape Province, South Africa

Authors: Davies Obaromi, Qin Yongsong, James Ndege

Abstract:

To interpolate scattered or regularly distributed data, there are imprecise or exact methods. However, there are some of these methods that could be used for interpolating data in a regular grid and others in an irregular grid. In spatial epidemiology, it is important to examine how a disease prevalence rates are distributed in space, and how they relate with each other within a defined distance and direction. In this study, for the geographic and graphic representation of the disease prevalence, linear and biharmonic spline methods were implemented in MATLAB, and used to identify, localize and compare for smoothing in the distribution patterns of tuberculosis (TB) in Eastern Cape Province. The aim of this study is to produce a more “smooth” graphical disease map for TB prevalence patterns by a 3-D curve fitting techniques, especially the biharmonic splines that can suppress noise easily, by seeking a least-squares fit rather than exact interpolation. The datasets are represented generally as a 3D or XYZ triplets, where X and Y are the spatial coordinates and Z is the variable of interest and in this case, TB counts in the province. This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a spline function, and it has also become the conventional method for its high precision, simplicity and flexibility. Surface and contour plots are produced for the TB prevalence at the provincial level for 2012 – 2015. From the results, the general outlook of all the fittings showed a systematic pattern in the distribution of TB cases in the province and this is consistent with some spatial statistical analyses carried out in the province. This new method is rarely used in disease mapping applications, but it has a superior advantage to be assessed at subjective locations rather than only on a rectangular grid as seen in most traditional GIS methods of geospatial analyses.

Keywords: linear, biharmonic splines, tuberculosis, South Africa

Procedia PDF Downloads 238
19023 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 362
19022 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn, N. Prathengjit

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 519
19021 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach

Authors: Uyi Kizito Ehigiamusoe

Abstract:

The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.

Keywords: economic growth, investments, money market, money market challenges, money market instruments

Procedia PDF Downloads 344
19020 Econometric Analysis of Organic Vegetable Production in Turkey

Authors: Ersin Karakaya, Halit Tutar

Abstract:

Reliable foods must be consumed in terms of healthy nutrition. The production and dissemination of diatom products in Turkey is rapidly evolving on the basis of preserving ecological balance, ensuring sustainability in agriculture and offering quality, reliable products to consumers. In this study, year in Turkey as (2002- 2015) to determine values of such as cultivated land of organic vegetable production, production levels, production quantity, number of products, number of farmers. It is intended to make the econometric analysis of the factors affecting the production of organic vegetable production (Number of products, Number of farmers and cultivated land). The main material of the study has created secondary data in relation to the 2002-2015 period as organic vegetable production in Turkey and regression analysis of the factors affecting the value of production of organic vegetable is determined by the Least Squares Method with EViews statistical software package.

Keywords: number of farmers, cultivated land, Eviews, Turkey

Procedia PDF Downloads 307
19019 Socratic Style of Teaching: An Analysis of Dialectical Method

Authors: Muhammad Jawwad, Riffat Iqbal

Abstract:

The Socratic method, also known as the dialectical method and elenctic method, has significant relevance in the contemporary educational system. It can be incorporated into modern-day educational systems theoretically as well as practically. Being interactive and dialogue-based in nature, this teaching approach is followed by critical thinking and innovation. The pragmatic value of the Dialectical Method has been discussed in this article, and the limitations of the Socratic method have also been highlighted. The interactive Method of Socrates can be used in many subjects for students of different grades. The Limitations and delimitations of the Method have also been discussed for its proper implementation. This article has attempted to elaborate and analyze the teaching method of Socrates with all its pre-suppositions and Epistemological character.

Keywords: Socratic method, dialectical method, knowledge, teaching, virtue

Procedia PDF Downloads 133
19018 Collaborative Technology Implementation Success and Knowledge Capacity: Case of Tunisian Banks with Mixed Capital

Authors: Amira Khelil, Habib Affes

Abstract:

Organization resource planning implementation success is important. Today`s competitors in business, in enterprise resource planning and in managing are becoming one of the main tools of achieving competitiveness in business. Resource technologies are considered as an infrastructure to create and maintain business to improve front and back-office efficiency and effectiveness. This study is significant to bring new ideas in determining the key antecedents which are technological resource planning implementation based on knowledge capacity perspectives and help to understand the key success factor in the Tunisian banks. Based on a survey of 150 front office Tunisian agents working in Tunisian banks with mixed capital, using Groupware system, only 51 respondents had given feedback to this survey. By using Warp PLS 3.0, through several tests the relationship between knowledge capability and Groupware implementation success having beta coefficient 0.37 and P-Value <0.01. This result highlights that knowledge capability of bank agent can influence the success of the Groupware implementation.

Keywords: groupware implementation, knowledge capacity, partial least squares method, Tunisian banks

Procedia PDF Downloads 489
19017 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models

Authors: Ozan Kahraman, Hao Feng

Abstract:

Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.

Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7

Procedia PDF Downloads 366
19016 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives

Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši

Abstract:

Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).

Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids

Procedia PDF Downloads 345
19015 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)

Authors: C. C. Chima, C. J. M. Anumaka

Abstract:

This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.

Keywords: earnings per share, environmental disclosures, return on assets, return on equity

Procedia PDF Downloads 85
19014 Designing a Model for Measuring the Components of Good Governance in the Iranian Higher Education System

Authors: Maria Ghorbanian, Mohammad Ghahramani, Mahmood Abolghasemi

Abstract:

Universities and institutions of higher education in Iran, like other higher education institutions in the world, have a heavy mission and task to educate students based on the needs of the country. Taking on such a serious responsibility requires having a good governance system for planning, formulating executive plans, evaluating, and finally modifying them in accordance with the current conditions and challenges ahead. In this regard, the present study was conducted with the aim of identifying the components of good governance in the Iranian higher education system by survey method and with a quantitative approach. In order to collect data, a researcher-made questionnaire was used, which includes two parts: personal and professional characteristics (5 questions) and the three components of good governance in the Iranian higher education system, including good management and leadership (8 items), continuous evaluation and effective (university performance, finance, and university appointments) (8 items) and civic responsibility and sustainable development (7 items). These variables were measured and coded in the form of a five-level Likert scale from "Very Low = 1" to "Very High = 5". First, the validity and reliability of the research model were examined. In order to calculate the reliability of the questionnaire, two methods of Cronbach's alpha and combined reliability were used. Fornell-Larker interaction and criterion were also used to determine the degree of diagnostic validity. The statistical population of this study included all faculty members of public universities in Tehran (N = 4429). The sample size was estimated to be 340 using the Cochran's formula. These numbers were studied using a randomized method with a proportional assignment. The data were analyzed by the structural equation method with the least-squares approach. The results showed that the component of civil responsibility and sustainable development with a factor load of 0.827 is the most important element of good governance.

Keywords: good governance, higher education, sustainable, development

Procedia PDF Downloads 171
19013 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 100
19012 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts

Authors: Xin-Hua Zhao

Abstract:

In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.

Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry

Procedia PDF Downloads 156
19011 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 225
19010 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 164
19009 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 143
19008 Ultracapacitor State-of-Energy Monitoring System with On-Line Parameter Identification

Authors: N. Reichbach, A. Kuperman

Abstract:

The paper describes a design of a monitoring system for super capacitor packs in propulsion systems, allowing determining the instantaneous energy capacity under power loading. The system contains real-time recursive-least-squares identification mechanism, estimating the values of pack capacitance and equivalent series resistance. These values are required for accurate calculation of the state-of-energy.

Keywords: real-time monitoring, RLS identification algorithm, state-of-energy, super capacitor

Procedia PDF Downloads 535
19007 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
19006 Dynamics and Advection in a Vortex Parquet on the Plane

Authors: Filimonova Alexanra

Abstract:

Inviscid incompressible fluid flows are considered. The object of the study is a vortex parquet – a structure consisting of distributed vortex spots of different directions, occupying the entire plane. The main attention is paid to the study of advection processes of passive particles in the corresponding velocity field. The dynamics of the vortex structures is considered in a rectangular region under the assumption that periodic boundary conditions are imposed on the stream function. Numerical algorithms are based on the solution of the initial-boundary value problem for nonstationary Euler equations in terms of vorticity and stream function. For this, the spectral-vortex meshless method is used. It is based on the approximation of the stream function by the Fourier series cut and the approximation of the vorticity field by the least-squares method from its values in marker particles. A vortex configuration, consisting of four vortex patches is investigated. Results of a numerical study of the dynamics and interaction of the structure are presented. The influence of the patch radius and the relative position of positively and negatively directed patches on the processes of interaction and mixing is studied. The obtained results correspond to the following possible scenarios: the initial configuration does not change over time; the initial configuration forms a new structure, which is maintained for longer times; the initial configuration returns to its initial state after a certain period of time. The processes of mass transfer of vorticity by liquid particles on a plane were calculated and analyzed. The results of a numerical analysis of the particles dynamics and trajectories on the entire plane and the field of local Lyapunov exponents are presented.

Keywords: ideal fluid, meshless methods, vortex structures in liquids, vortex parquet.

Procedia PDF Downloads 64
19005 Investigation of the Speckle Pattern Effect for Displacement Assessments by Digital Image Correlation

Authors: Salim Çalışkan, Hakan Akyüz

Abstract:

Digital image correlation has been accustomed as a versatile and efficient method for measuring displacements on the article surfaces by comparing reference subsets in undeformed images with the define target subset in the distorted image. The theoretical model points out that the accuracy of the digital image correlation displacement data can be exactly anticipated based on the divergence of the image noise and the sum of the squares of the subset intensity gradients. The digital image correlation procedure locates each subset of the original image in the distorted image. The software then determines the displacement values of the centers of the subassemblies, providing the complete displacement measures. In this paper, the effect of the speckle distribution and its effect on displacements measured out plane displacement data as a function of the size of the subset was investigated. Nine groups of speckle patterns were used in this study: samples are sprayed randomly by pre-manufactured patterns of three different hole diameters, each with three coverage ratios, on a computer numerical control punch press. The resulting displacement values, referenced at the center of the subset, are evaluated based on the average of the displacements of the pixel’s interior the subset.

Keywords: digital image correlation, speckle pattern, experimental mechanics, tensile test, aluminum alloy

Procedia PDF Downloads 74