Search results for: feature combination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4567

Search results for: feature combination

4477 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
4476 Detecting Potential Biomarkers for Ulcerative Colitis Using Hybrid Feature Selection

Authors: Mustafa Alshawaqfeh, Bilal Wajidy, Echin Serpedin, Jan Suchodolski

Abstract:

Inflammatory Bowel disease (IBD) is a disease of the colon with characteristic inflammation. Clinically IBD is detected using laboratory tests (blood and stool), radiology tests (imaging using CT, MRI), capsule endoscopy and endoscopy. There are two variants of IBD referred to as Ulcerative Colitis (UC) and Crohn’s disease. This study employs a hybrid feature selection method that combines a correlation-based variable ranking approach with exhaustive search wrapper methods in order to find potential biomarkers for UC. The proposed biomarkers presented accurate discriminatory power thereby identifying themselves to be possible ingredients to UC therapeutics.

Keywords: ulcerative colitis, biomarker detection, feature selection, inflammatory bowel disease (IBD)

Procedia PDF Downloads 402
4475 The Effect of Thymoquinone and Sorafenib Combination on Hepatocellular Carcinoma Cell Line

Authors: Nabila N. El-Maraghy, Amany Essa, Yousra Abdel–Mottaleb, Nada Ismail

Abstract:

The use of combination of chemotherapy and natural products to influence the cell death with low doses of chemotherapeutic agents and few side effects has recently emerged as a new method of cancer therapy. Aim: Evaluation the modulatory effect of Thymoquinone on HepG2 cells treated with Sorafenib. Methods: Hepatocellular Carcinoma HepG2 cell line was treated with Sorafenib and TQ individually and in combination. The effect of these treatments on cell viability (MTT assay), apoptosis (Expression of Caspase-3) and oxidative markers (GSH content and extent of lipid peroxidation) was determined. Results: When compared the effect of both agents alone and the combination of the IC50 of Sorafenib and the IC50 TQ, the combination resulted in reduction of cell inhibition and apoptosis and antagonize their actions on GSH content and extent of lipid peroxidation which are increased. This study showed potent anti-tumor activity of both TQ and Sorafenib separately on HepG2 but upon combination surprisingly they interacted and give antagonistic effect. Conclusion: Co-treatment resulted in antagonistic interaction between Sorafenib and Thymoquinone.

Keywords: antagonism, hepatocellular carcinoma, sorafenib, thymoquinone

Procedia PDF Downloads 553
4474 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 118
4473 Designing Back-Stepping Sliding Mode Controller for a Class of 4Y Octorotor

Authors: I. Khabbazi, R. Ghasemi

Abstract:

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octorotor UAV and its feature will be shown.

Keywords: sliding mode, backstepping, decoupling, octorotor UAV

Procedia PDF Downloads 440
4472 Beneficial Effect of Biotin in Combination with Canagliflozin on High Fat Diet Induced Diabetes in Rats

Authors: Rayhana Begum, HongBin Wang, Nur Alam Siddiquee, Md.Yasin Ahmed

Abstract:

Biotin treatment has significant effects on blood glucose, and pharmacological doses of biotin improve hyperglycemia. The present study was aimed to investigate the efficacy and safety of biotin in combination with canagliflozin in improving glycemic control on High Fat Diet-induced diabetes in Rats. Thirty male rats were divided into five groups (six rats /group): control, high fat diet (HFD), canagliflozin (CAG), biotin (BIO), and CAG + BIO. The treatments with CAG and /or BIO significantly reduced the body weight gain, blood glucose and HbA1c levels, whereas CAG in combination with BIO revealed greater glycemic improvement than CAG monotherapy. The treatment with CAG and /or BIO causes significant change in lipid profile and CK level while the treatment with CAG in combination with BIO showed better results as compared with CAG monotherapy. Furthermore, combination of biotin with CAG improved the pancreatic and cardiac damage when compared with other treated groups.

Keywords: canagliflozin, biotin, HbA1c, lipid profile

Procedia PDF Downloads 160
4471 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 365
4470 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 368
4469 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 215
4468 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 370
4467 Potency Interaction using Simvastatin and Herbs Cholesterol Lowering Agent, Prevention of Unwanted Effect in Combination Hyperlipidemia Therapy

Authors: Agung A. Ginanjar, Lilitasari, Indra Prasetya, Rizal R. Hanif, Yusrina Rismandini, Atina Hussaana, Nurita P. Sari

Abstract:

Hyperlipidemia is an increase of lipids and cholesterol in the blood that causes the formation of atherosklerosis. The recent pharmacological therapy nowadays is statin. Many Indonesian people use of medicinal plants. There are several medical plants that people always use to cure hyperlipidemia such as bulbs onion sabrang, areca nuts, and seed of fenugreek. Most people often use a combination therapy of conventional medicine and herbs to achieve the desired therapeutic effect of combination therapy. The use of combination therapy might cause the interaction of pharmacodynamic from those medicines so that it influences the pharmacological effect of one of medicine. The aim of this study is to know the interaction of simvastatin and a cholesterol-lowering herb seen in rats pharmacodynamic simvastatin phase. This research used post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. The ANOVA test is used when the data is obtained homogeneous but if it is found that the data are not homogeneous then kruskal-wallis test is used. Normal (63.196 mg/dl), negative (70.604 mg/dl), positive (62.512 mg/dl), areca nuts (56.564 mg/dl), fenugreek seed (47.538 ,g/dl), onion sabrang (62.312 mg/dl). The results prove that the combination of herbs and simvastatin did not have a significant difference (P>0,05). The conclusion of this study is that the combination of simvastatin and a cholesterol-lowering herb can cause some pharmacodynamic interactions such as a synergistic effect, antagonist, and a powerful additive, so that combination therapy is not more effective than single simvastatin therapy. The use of the combination therapy is not given in the same time. It would be better if there are some period of time when the combination therapy is applied.

Keywords: onion bulb sabrang, areca nuts, seed of fenugreek, interaction medicine, hyperlipidemia

Procedia PDF Downloads 530
4466 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering

Authors: Tianyang Xu

Abstract:

Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.

Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics

Procedia PDF Downloads 130
4465 Glass and Polypropylene Combinations for Thermoplastic Preforms

Authors: Hireni Mankodi

Abstract:

The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.

Keywords: thermoplastic, preform, laminates, hybrid yarn, glass

Procedia PDF Downloads 580
4464 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot

Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.

Abstract:

Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.

Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud

Procedia PDF Downloads 72
4463 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data

Authors: Salam Khalifa, Naveed Ahmed

Abstract:

We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.

Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation

Procedia PDF Downloads 373
4462 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik

Abstract:

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.

Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping

Procedia PDF Downloads 408
4461 AGEs-Aggravating Renal Lesions in C57BL/6J Mice, STZ-Induced Diabetes Nephropathy Model

Authors: Xing Lv, Hui-Qin Xu

Abstract:

The present study aimed to reveal the mechanism in aggravating STZ induced diabetic nephropathy (DN) by AGEs (advanced glycation end products). At the eighth day, 20 diabetic mice were randomly divided into STZ group and combination (combine AGEs with STZ) group. Simultaneously, AGEs group and normal group were set. Only mice in AGEs group, combination group were fed with high-AGEs diets. Mice diabetic conventional indicators, biochemical analysis were measured. Among the indictors, food consumptions, water intake, urine output, blood glucose, urine protein, urine creatinine, serum urea nitrogen were increased significantly in STZ, combination groups. The AGEs levels in combination group increased significantly when compared with STZ group. Weights and insulin levels in the STZ, combination groups were decreased significantly when compared with normal group, and the difference was significantly between AGEs group and STZ group. As a conclusion, AGEs play an important role in the DN development, inducing kidney damages.

Keywords: AGEs, diabetic nephropathy, serum urea nitrogen, urine protein

Procedia PDF Downloads 444
4460 Utilization of Silicon for Sustainable Rice Yield Improvement in Acid Sulfate Soil

Authors: Bunjirtluk Jintaridth

Abstract:

Utilization of silicon for sustainable rice cultivation in acid sulfate soils was studied for 2 years. The study was conducted on Rungsit soils in Amphoe Tanyaburi, Pathumtani Province. The objectives of this study were to assess the effect of high quality organic fertilizer in combination with silicon and chemical fertilizer on rice yield, chemical soil properties after using soil amendments, and also to assess the economic return. A Randomized Complete Block Design (RCBD) with 10 treatments and 3 replications were employed. The treatments were as follows: 1) control 2) chemical fertilizer (recommended by Land Development Department, LDD 3) silicon 312 kg/ha 4) high quality organic fertilizer at 1875 kg/ha (the recommendation rate by LDD) 5) silicon 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 6) silicon at the 312 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 7) silicon 156 kg/ha in combination with chemical fertilizer 8) silicon at the 312 kg/ha in combination with chemical fertilizer 9) silicon 156 kg/ha in combination with ½ chemical fertilizer rate, and 10) silicon 312 kg/ha in combination with ½ chemical fertilizer rate. The results of 2 years indicated the treatment tended to increase soil pH (from 5.1 to 4.7-5.5), percentage of organic matter (from 2.43 to 2.54 - 2.94%); avail. P (from 7.5 to 7-21 mg kg-1 P; ext. K (from 616 to 451-572 mg kg-1 K), ext Ca (from 1962 to 2042.3-4339.7 mg kg-1 Ca); ext Mg (from 1586 to 808.7-900 mg kg-1 Mg); but decrease the ext. Al (from 2.56 to 0.89-2.54 cmol kg-1 Al. Two years average of rice yield, the highest yield was obtained from silicon 156 kg/ha application in combination with high quality organic fertilizer 300 kg/rai (3770 kg/ha), or using silicon at the 312 kg/ha combination with high quality organic fertilizer 300 kg/rai. (3,750 kg/ha). It was noted that chemical fertilizer application with 156 and 312 kg/ha silicon gave only 3,260 และ 3,133 kg/ha, respectively. On the other hand, half rate of chemical fertilizer with 156 and 312 kg/ha with silicon gave the yield of 2,934 และ 3,218 kg/ha, respectively. While high quality organic fertilizer only can produce 3,318 kg/ha as compare to rice yield of 2,812 kg/ha from control. It was noted that the highest economic return was obtained from chemical fertilizer treated plots (886 dollars/ha). Silicon application at the rate of 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha gave the economic return of 846 dollars/ha, while 312 kg/ha of silicon with chemical fertilizer gave the lowest economic return (697 dollars/ha).

Keywords: rice, high quality organic fertilizer, acid sulfate soil, silicon

Procedia PDF Downloads 164
4459 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach

Authors: Munaf Rashid

Abstract:

For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.

Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook

Procedia PDF Downloads 472
4458 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
4457 Combination of Lamotrigine and Duloxetine: A Potential Approach for the Treatment of Acute Bipolar Depression

Authors: Kedar S. Prabhavalkar, Nimmy Baby Poovanpallil

Abstract:

Lamotrigine is approved for maintenance treatment of bipolar I disorder. However, its role in the treatment of acute bipolar depression is not well clear. Its efficacy in the treatment of major depressive disorders including refractory unipolar depression suggested the use of lamotrigine as an augmentation drug for acute bipolar depression. The present study aims to evaluate and perform a comparative analysis of the therapeutic effects of lamotrigine, an epileptic mood stabilizer, when used alone and in combination with duloxetine in treating acute bipolar depression at different doses of lamotrigine. Male swiss albino mice were used. For evaluation of efficacy of combination, immobility period was analyzed 30 min after the treatment from forced swim and tail suspension tests. Further amount of sucrose consumed in sucrose preference test was estimated. The combination of duloxetine and lamotrigine showed potentiation of antidepressant activity in acute models. Decrease in immobility time and increase in the amount of sucrose consumption in stressed mice were higher in combined group compared to lamotrigine monotherapy group. Brain monoamine levels were also attenuated more with combination compared to monotherapy. Results of the present study suggest potential role of lamotrigine and duloxetine combination in the treatment of acute bipolar depression.

Keywords: lamotrigine, duloxetine, acute bipolar depression, augmentation

Procedia PDF Downloads 507
4456 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 494
4455 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
4454 Antihyperlipidemia Combination of Simvastatin and Herbal Drink (Conventional Drug Interaction Potential Study and Herbal As Prevention Adverse Effect on Combination Therapy Hyperlipidemia)

Authors: Gesti Prastiti, Maylina Adani, Yuyun darma A. N., M. Khilmi F., Yunita Wahyu Pratiwi

Abstract:

Combination therapy may allow interaction on two drugs or more that can give adverse effects on patients. Simvastatin is a drug of antihyperlipidemia it can interact with drugs which work on cytochrome P450 CYP3A4 because it can interfere the performance of simvastatin. Flavonoid found in plants can inhibit the cytochrome P450 CYP3A4 if taken with simvastatin and can increase simvastatin levels in the body and increases the potential side effects of simvastatin such as myopati and rhabdomyolysis. Green tea leaves and mint are herbal medicine which has the effect of antihiperlipidemia. This study aims to determine the potential interaction of simvastatin with herbal drinks (green tea leaves and mint). This research method are experimental post-test only control design. Test subjects were divided into 5 groups: normal group, negative control group, simvastatin group, a combination of green tea group and the combination group mint leaves. The study was conducted over 32 days and total cholesterol levels were analyzed by enzymatic colorimetric test method. Results of this study is the obtainment of average value of total cholesterol in each group, the normal group (65.92 mg/dL), the negative control group the average total cholesterol test in the normal group was (69.86 mg/dL), simvastatin group (58.96 mg/dL), the combination of green tea group (58.96 mg/dL), and the combination of mint leaves (63.68 mg/dL). The conclusion is between simvastatin combination therapy with herbal drinks have the potential for pharmacodynamic interactions with a synergistic effect, antagonist, and a powerful additive, so the combination therapy are no more effective than a single administration of simvastatin therapy.

Keywords: hyperlipidemia, simvastatin, herbal drinks, green tea leaves, mint leaves, drug interactions

Procedia PDF Downloads 395
4453 Statistical Analysis of Natural Images after Applying ICA and ISA

Authors: Peyman Sheikholharam Mashhadi

Abstract:

Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.

Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images

Procedia PDF Downloads 339
4452 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production

Authors: Lubomir Machuca, Vit Fara

Abstract:

Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.

Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry

Procedia PDF Downloads 240
4451 An Automatic Feature Extraction Technique for 2D Punch Shapes

Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari

Abstract:

Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.

Keywords: feature extraction, internal features, punch shapes, sheet metal

Procedia PDF Downloads 615
4450 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
4449 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 478
4448 Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval

Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje

Abstract:

Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.

Keywords: indexing, retrieval, multimedia, graph algorithm, graph code

Procedia PDF Downloads 161