Search results for: effective equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11305

Search results for: effective equation

11215 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility

Procedia PDF Downloads 218
11214 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 120
11213 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation

Authors: E. V. Krishnan

Abstract:

In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.

Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation

Procedia PDF Downloads 331
11212 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method

Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 112
11211 Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect

Authors: Tai-Ping Chang

Abstract:

In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping.

Keywords: chaotic motion, damping, Lyapunov exponents, single-walled carbon nanotube

Procedia PDF Downloads 320
11210 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple

Procedia PDF Downloads 479
11209 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
11208 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis

Authors: Elisha Kyirem

Abstract:

Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.

Keywords: migration, adaptation, climate change, adaptation, poverty reduction

Procedia PDF Downloads 395
11207 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation

Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan

Abstract:

We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.

Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics

Procedia PDF Downloads 334
11206 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams

Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman

Abstract:

Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.

Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture

Procedia PDF Downloads 551
11205 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach

Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena

Abstract:

In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.

Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation

Procedia PDF Downloads 65
11204 Multiple-Lump-Type Solutions of the 2D Toda Equation

Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique

Abstract:

In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.

Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution

Procedia PDF Downloads 222
11203 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, step method, delay differential equation, two delays

Procedia PDF Downloads 205
11202 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model

Procedia PDF Downloads 153
11201 Free Vibration of Functionally Graded Smart Beams Based on the First Order Shear Deformation Theory

Authors: A. R. Nezamabadi, M. Veiskarami

Abstract:

This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers based on the first order shear deformation theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. The governing equation is established. Resulting equation is solved using the Euler's equation. The effects of the constituent volume fractions, the influences of applied voltage on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: mechanical buckling, functionally graded beam, first order shear deformation theory, free vibration

Procedia PDF Downloads 476
11200 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 448
11199 Exact Solutions of Discrete Sine-Gordon Equation

Authors: Chao-Qing Dai

Abstract:

Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.

Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors

Procedia PDF Downloads 420
11198 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 365
11197 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation

Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov

Abstract:

We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.

Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution

Procedia PDF Downloads 432
11196 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: A. Guezane-Lakoud, S. Bensebaa

Abstract:

In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.

Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem

Procedia PDF Downloads 414
11195 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni

Abstract:

In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 438
11194 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 261
11193 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method

Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh

Abstract:

When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.

Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity

Procedia PDF Downloads 496
11192 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 105
11191 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 161
11190 On the Derivation of Variable Step BBDF for Solving Second Order Stiff ODEs

Authors: S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, M. Suleiman

Abstract:

The method of solving second order stiff ordinary differential equation (ODEs) that is based on backward differentiation formula (BDF) is considered in this paper. We derived the method by increasing the order of the existing method using an improved strategy in choosing the step size. Numerical results are presented to compare the efficiency of the proposed method to the MATLAB’s suite of ODEs solvers namely ode15s and ode23s. The method was found to be efficient to solve second order ordinary differential equation.

Keywords: backward differentiation formulae, block backward differentiation formulae, stiff ordinary differential equation, variable step size

Procedia PDF Downloads 497
11189 Validation of Codes Dragon4 and Donjon4 by Calculating Keff of a Slowpoke-2 Reactor

Authors: Otman Jai, Otman Elhajjaji, Jaouad Tajmouati

Abstract:

Several neutronic calculation codes must be used to solve the equation for different levels of discretization which all necessitate a specific modelisation. This chain of such models, known as a calculation scheme, leads to the knowledge of the neutron flux in a reactor from its own geometry, its isotopic compositions and a cross-section library. Being small in size, the 'Slowpoke-2' reactor is difficult to model due to the importance of the leaking neutrons. In the paper, the simulation model is presented (geometry, cross section library, assumption, etc.), and the results obtained by DRAGON4/DONJON4 codes were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor and the experimental data. Criticality calculations have been performed to verify and validate the model. Since created model properly describes the reactor core, it can be used for calculations of reactor core parameters and for optimization of research reactor application.

Keywords: transport equation, Dragon4, Donjon4, neutron flux, effective multiplication factor

Procedia PDF Downloads 470
11188 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.

Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation

Procedia PDF Downloads 202
11187 Partial Differential Equation-Based Modeling of Brain Response to Stimuli

Authors: Razieh Khalafi

Abstract:

The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.

Keywords: brain, stimuli, partial differential equation, response, EEG signal

Procedia PDF Downloads 554
11186 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: free particle, point canonical transformation method, position-dependent mass, staggered mass distribution

Procedia PDF Downloads 403