Search results for: demand forecast
3542 Forecasting Silver Commodity Prices Using Geometric Brownian Motion: A Stochastic Approach
Authors: Sina Dehghani, Zhikang Rong
Abstract:
Historically, a variety of approaches have been taken to forecast commodity prices due to the significant implications of these values on the global economy. An accurate forecasting tool for a valuable commodity would significantly benefit investors and governmental agencies. Silver, in particular, has grown significantly as a commodity in recent years due to its use in healthcare and technology. This manuscript aims to utilize the Geometric Brownian Motion predictive model to forecast silver commodity prices over multiple 3-year periods. The results of the study indicate that the model has several limitations, particularly its inability to work effectively over longer periods of time, but still was extremely effective over shorter time frames. This study sets a baseline for silver commodity forecasting with GBM, and the model could be further strengthened with refinement.Keywords: geometric Brownian motion, commodity, risk management, volatility, stochastic behavior, price forecasting
Procedia PDF Downloads 313541 Physiological and Psychological Influence on Office Workers during Demand Response
Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura
Abstract:
In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.Keywords: demand response, illumination, questionnaire, electrocardiogram
Procedia PDF Downloads 3583540 Women-Hating Masculinities: How the Demand for Prostitution Fuels Sex Trafficking
Authors: Rosa M. Senent
Abstract:
Over the centuries, prostitution has been problematized from many sides, with women always at the center of the debate. However, prostitution is a gendered, demand-driven phenomenon. Thus, a focus must be put on the men who demand it, as an increasing number of studies have been done in the last few decades. The purpose of this paper is to expose how men's discourse online reveals the link between their demand for paid sex in prostitution and sex trafficking. The methodological tool employed was Critical Discourse Analysis (CDA). A critical analysis of sex buyers' discourse online showed that online communities of sex buyers are a useful tool in researching their behavior towards women, that their knowledge of sex trafficking and exploitation do not work as a deterrent for them to buy sex, and that the type of masculinity that sex buyers endorse is characterized by attitudes linked to the perpetuation of violence against women.Keywords: masculinities, prostitution, sex trafficking, violence
Procedia PDF Downloads 1433539 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate
Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe
Abstract:
This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.Keywords: ARIMA, error metrices, model selection, SETAR
Procedia PDF Downloads 2483538 Evaluation of Demand of Fire Insurance in Iran and Embrace Digitalization to Improve It
Authors: Mahsa Ghorbani Jazin
Abstract:
The insurance industry has a prominent place in the economy of every country in the world. Fire insurance policies are types of non-life insurance, which protect insureds against financial losses of fire and related risks. In this paper, factors that are affecting the demand for fire insurance in Iran have been examined. Due to this reason, information and data have been collected during the period 1989-2019. In this research, the final model was estimated. The obtained results represent that as the population and literacy rate increase, people are more willing to purchase fire insurance. On the other hand, the actual per capita income has a negative influence on the demand for this type of insurance. Also, the amount of compensation that is paid in losses can be assumed as an indirect advertisement for fire insurance and attracts people to buy this policy. Finally, the new technology in the insurance industry is examined as a new underestimated way for increasing demand, especially in Iran.Keywords: fire insurance, demand, per capita income, literacy rate, population, compensation paid, Insurtech
Procedia PDF Downloads 2053537 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States
Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi
Abstract:
The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM
Procedia PDF Downloads 3153536 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning
Authors: Redouane Larbi Boufeniza, Jing-Jia Luo
Abstract:
This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning
Procedia PDF Downloads 803535 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem
Authors: Fatemeh Torfi
Abstract:
Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.Keywords: fuzzy least-squares, stochastic, location, routing problems
Procedia PDF Downloads 4383534 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 1103533 Dynamic Pricing With Demand Response Managment in Smart Grid: Stackelberg Game Approach
Authors: Hasibe Berfu Demi̇r, Şakir Esnaf
Abstract:
In the past decade, extensive improvements have been done in electrical grid infrastructures. It is very important to make plans on supply, demand, transmission, distribution and pricing for the development of the electricity energy sector. Based on this perspective, in this study, Stackelberg game approach is proposed for demand participation management (DRM), which has become an important component in the smart grid to effectively reduce power generation costs and user bills. The purpose of this study is to examine electricity consumption from a dynamic pricing perspective. The results obtained were compared with the current situation and the results were interpreted.Keywords: lectricity, stackelberg, smart grid, demand response managment, dynamic pricing
Procedia PDF Downloads 1023532 The Factors Predicting Credibility of News in Social Media in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.Keywords: credibility of news, behaviors and attitudes, social media, web board
Procedia PDF Downloads 4723531 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches
Authors: Dimitrios I. Tselentis, Simon P. Washington
Abstract:
Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches
Procedia PDF Downloads 4913530 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump
Authors: Merieleen Engtipi
Abstract:
India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.Keywords: energy demand, energy cooperation, fossil fuels, technology transfer
Procedia PDF Downloads 2573529 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance
Authors: Reina Kawase, Yuzuru Matsuoka
Abstract:
To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand
Procedia PDF Downloads 5563528 Advertising Incentives of National Brands against Private Labels: The Case of OTC Heartburn Drugs
Authors: Lu Liao
Abstract:
The worldwide expansion of private labels over the past two decades not only transformed the choice sets of consumers but also forced manufacturers of national brands to design new marketing strategies to maintain their market positions. This paper empirically analyzes the impact of private labels on advertising incentives of national brands. The paper first develops a consumer demand model that incorporates spillover effects of advertising and finds positive spillovers of national brands’ advertising on demand for private label products. With the demand estimates, the researcher simulates the equilibrium prices and advertising levels for leading national brands in a counterfactual where private labels are eliminated to quantify the changes in national brands’ advertising incentives in response to the rise of private labels.Keywords: advertising, demand estimation, spillover effect, structural model
Procedia PDF Downloads 313527 Mathematical Modeling of District Cooling Systems
Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari
Abstract:
District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization
Procedia PDF Downloads 2053526 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference
Authors: Jang kyun Cho, Jeong-dong Lee
Abstract:
The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.Keywords: innovation diffusion, agent based model, small-world network, demand forecasting
Procedia PDF Downloads 3423525 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex
Authors: Li Zhu, Binghua Wang, Yong Sun
Abstract:
China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.Keywords: agritourism complex, energy planning, energy demand simulation, hierarchical structure model
Procedia PDF Downloads 1963524 Analyzing the Relationship between the Spatial Characteristics of Cultural Structure, Activities, and the Tourism Demand
Authors: Deniz Karagöz
Abstract:
This study is attempt to comprehend the relationship between the spatial characteristics of cultural structure, activities and the tourism demand in Turkey. The analysis divided into four parts. The first part consisted of a cultural structure and cultural activity (CSCA) index provided by principal component analysis. The analysis determined four distinct dimensions, namely, cultural activity/structure, accessing culture, consumption, and cultural management. The exploratory spatial data analysis employed to determine the spatial models of cultural structure and cultural activities in 81 provinces in Turkey. Global Moran I indices is used to ascertain the cultural activities and the structural clusters. Finally, the relationship between the cultural activities/cultural structure and tourism demand was analyzed. The raw/original data of the study official databases. The data on the cultural structure and activities gathered from the Turkish Statistical Institute and the data related to the tourism demand was provided by the Republic of Turkey Ministry of Culture and Tourism.Keywords: cultural activities, cultural structure, spatial characteristics, tourism demand, Turkey
Procedia PDF Downloads 5643523 Investigating the Demand of Short-Shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Alistair Duffy, Ashley Hopwell
Abstract:
Accurate prediction of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. Current research in this area focused on limited number of factors specific to a single product or a business type. This paper gives an overview of the current literature on the variability factors used to predict demand and the existing forecasting techniques of short shelf life products. It then extends it by adding new factors and investigating if there is a time lag and possibility of noise in the orders. It also identifies the most important factors using correlation and Principal Component Analysis (PCA).Keywords: demand forecasting, deteriorating products, food wholesalers, principal component analysis, variability factors
Procedia PDF Downloads 5273522 Air Access Liberalisation and Tourism Trade Evidence from a Sids
Authors: Seetanah Boopen, R. V. Sannassee
Abstract:
The objective of the present study is two-fold. Firstly, to assess the impact of air access liberalization on tourism demand for Mauritius and secondly to analyses the dual impact of the interplay between air access liberalization and marketing promotion efforts on tourism demand. Using an Autoregressive Distributed Lag model, the results suggest that air access liberalization is an important ingredient, albeit to a lesser extent as compared to other classical explanatory variables, of tourism demand. The results also highlight the fact that Mauritius is perceived as a luxurious destination and tourists are deemed price sensitive. Moreover, our dynamic approach interestingly confirms the presence of repeat tourism in the island. Finally, the findings also uncover the positive impact of the interplay between air access liberalization and marketing promotion efforts on fostering tourism demand.Keywords: air access liberalization, ARDL, SIDS, time series
Procedia PDF Downloads 3123521 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 1613520 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues
Authors: Tianyu Wang, Nikita Karandikar
Abstract:
The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.Keywords: AIS, automobile exports, maritime big data, trade flows
Procedia PDF Downloads 1253519 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 4723518 Inventory Decisions for Perishable Products with Age and Stock Dependent Demand Rate
Authors: Maher Agi, Hardik Soni
Abstract:
This paper presents a deterministic model for optimized control of the inventory of a perishable product subject to both physical deterioration and degradation of its freshness condition. The demand for the product depends on its current inventory level and freshness condition. Our model allows for any positive amount of end of cycle inventory. Some useful conditions that characterize the optimal solution of the model are derived and an algorithm is presented for finding the optimal values of the price, the inventory cycle, the end of cycle inventory level and the order quantity. Numerical examples are then given. Our work shows how the product freshness in conjunction with the inventory deterioration affects the inventory management decisions.Keywords: inventory management, lot sizing, perishable products, deteriorating inventory, age-dependent demand, stock-dependent demand
Procedia PDF Downloads 2383517 Urban Energy Demand Modelling: Spatial Analysis Approach
Authors: Hung-Chu Chen, Han Qi, Bauke de Vries
Abstract:
Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics
Procedia PDF Downloads 1523516 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 4833515 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization
Authors: Daham Owaid Matrood, Naqaa Hussein Raheem
Abstract:
Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization
Procedia PDF Downloads 4583514 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia
Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha
Abstract:
In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping
Procedia PDF Downloads 3323513 Creating Growth and Reducing Inequality in Developing Countries
Authors: Rob Waddle
Abstract:
We study an economy with weak justice and security systems and with weak public policy and regulation or little capacity to implement them, and with high barriers to profitable sectors. We look at growth and development opportunities based on the derived demand. We show that there is hope for such an economy to grow up and to generate a win-win situation for all stakeholders if the derived demand is supplied. We then investigate conditions that could stimulate the derived demand supply. We show that little knowledge of public, private and international expenditures in the economy and academic tools are enough to trigger the derived demand supply. Our model can serve as guidance to donor and NGO working in developing countries, and show to media the best way to help is to share information about existing and accessible opportunities. It can also provide direction to vocational schools and universities that could focus more on providing tools to seize existing opportunities.Keywords: growth, development, monopoly, oligopoly, inequality
Procedia PDF Downloads 340