Search results for: data integrity and privacy
25738 Privacy Protection Principles of Omnichannel Approach
Authors: Renata Mekovec, Dijana Peras, Ruben Picek
Abstract:
The advent of the Internet, mobile devices and social media is revolutionizing the experience of retail customers by linking multiple sources through various channels. Omnichannel retailing is a retailing that combines multiple channels to allow customers to seamlessly leverage all the distribution information online and offline while shopping. Therefore, today data are an asset more critical than ever for all organizations. Nonetheless, because of its heterogeneity through platforms, developers are currently facing difficulties in dealing with personal data. Considering the possibilities of omnichannel communication, this paper presents channel categorization that could enhance the customer experience of omnichannel center called hyper center. The purpose of this paper is fundamentally to describe the connection between the omnichannel hyper center and the customer, with particular attention to privacy protection. The first phase was finding the most appropriate channels of communication for hyper center. Consequently, a selection of widely used communication channels has been identified and analyzed with regard to the effect requirements for optimizing user experience. The evaluation criteria are divided into 3 groups: general, user profile and channel options. For each criterion the weight of importance for omnichannel communication was defined. The most important thing was to consider how the hyper center can make user identification while respecting the privacy protection requirements. The study carried out also shows what customer experience across digital networks would look like, based on an omnichannel approach owing to privacy protection principles.Keywords: personal data, privacy protection, omnichannel communication, retail
Procedia PDF Downloads 14625737 Privacy Paradox and the Internet of Medical Things
Authors: Isabell Koinig, Sandra Diehl
Abstract:
In recent years, the health-care context has not been left unaffected by technological developments. In recent years, the Internet of Medical Things (IoMT)has not only led to a collaboration between disease management and advanced care coordination but also to more personalized health care and patient empowerment. With more than 40 % of all health technology being IoMT-related by 2020, questions regarding privacy become more prevalent, even more so during COVID-19when apps allowing for an intensive tracking of people’s whereabouts and their personal contacts cause privacy advocates to protest and revolt. There is a widespread tendency that even though users may express concerns and fears about their privacy, they behave in a manner that appears to contradict their statements by disclosing personal data. In literature, this phenomenon is discussed as a privacy paradox. While there are some studies investigating the privacy paradox in general, there is only scarce research related to the privacy paradox in the health sector and, to the authors’ knowledge, no empirical study investigating young people’s attitudes toward data security when using wearables and health apps. The empirical study presented in this paper tries to reduce this research gap by focusing on the area of digital and mobile health. It sets out to investigate the degree of importance individuals attribute to protecting their privacy and individual privacy protection strategies. Moreover, the question to which degree individuals between the ages of 20 and 30 years are willing to grant commercial parties access to their private data to use digital health services and apps are put to the test. To answer this research question, results from 6 focus groups with 40 participants will be presented. The focus was put on this age segment that has grown up in a digitally immersed environment. Moreover, it is particularly the young generation who is not only interested in health and fitness but also already uses health-supporting apps or gadgets. Approximately one-third of the study participants were students. Subjects were recruited in August and September 2019 by two trained researchers via email and were offered an incentive for their participation. Overall, results indicate that the young generation is well informed about the growing data collection and is quite critical of it; moreover, they possess knowledge of the potential side effects associated with this data collection. Most respondents indicated to cautiously handle their data and consider privacy as highly relevant, utilizing a number of protective strategies to ensure the confidentiality of their information. Their willingness to share information in exchange for services was only moderately pronounced, particularly in the health context, since health data was seen as valuable and sensitive. The majority of respondents indicated to rather miss out on using digital and mobile health offerings in order to maintain their privacy. While this behavior might be an unintended consequence, it is an important piece of information for app developers and medical providers, who have to find a way to find a user base for their products against the background of rising user privacy concerns.Keywords: digital health, privacy, privacy paradox, IoMT
Procedia PDF Downloads 13625736 Evaluation of Cast-in-Situ Pile Condition Using Pile Integrity Test
Authors: Mohammad I. Hossain, Omar F. Hamim
Abstract:
This paper presents a case study on a pile integrity test for assessing the integrity of piles as well as a physical dimension (e.g., cross-sectional area, length), continuity, and consistency of the pile materials. The recent boom in the socio-economic condition of Bangladesh has given rise to the building of high-rise commercial and residential infrastructures. The advantage of the pile integrity test lies in the fact that it is possible to get an approximate indication regarding the quality of the sub-structure before commencing the construction of the super-structure. This paper aims at providing a classification of cast-in-situ piles based on characteristic reflectograms obtained using the Sonic Integrity Testing program for the sub-soil condition of Narayanganj, Bangladesh. The piles have been classified as 'Pile Type-1', 'Pile Type-2', 'Pile Type-3', 'Pile type-4', 'Pile Type-5' or 'Pile Type-6' from the visual observations of reflections from the generated stress waves by striking the pile head with a handheld hammer. With respect to construction quality and integrity, piles have been further classified into three distinct categories, i.e., satisfactory, may be satisfactory, and unsatisfactory.Keywords: cast-in-situ piles, characteristic reflectograms, pile integrity test, sonic integrity testing program
Procedia PDF Downloads 11925735 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies
Authors: Lindelwa Mngomezulu, Tonderai Muchenje
Abstract:
Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.Keywords: e-mail security, cyber-attacks, data integrity, authentication
Procedia PDF Downloads 13625734 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 14525733 A Brave New World of Privacy: Empirical Insights into the Metaverse’s Personalization Dynamics
Authors: Cheng Xu
Abstract:
As the metaverse emerges as a dynamic virtual simulacrum of reality, its implications on user privacy have become a focal point of interest. While previous discussions have ventured into metaverse privacy dynamics, a glaring empirical gap persists, especially concerning the effects of personalization in the context of news recommendation services. This study stands at the forefront of addressing this void, meticulously examining how users' privacy concerns shift within the metaverse's personalization context. Through a pre-registered randomized controlled experiment, participants engaged in a personalization task across both the metaverse and traditional online platforms. Upon completion of this task, a comprehensive news recommendation service provider offers personalized news recommendations to the users. Our empirical findings reveal that the metaverse inherently amplifies privacy concerns compared to traditional settings. However, these concerns are notably mitigated when users have a say in shaping the algorithms that drive these recommendations. This pioneering research not only fills a significant knowledge gap but also offers crucial insights for metaverse developers and policymakers, emphasizing the nuanced role of user input in shaping algorithm-driven privacy perceptions.Keywords: metaverse, privacy concerns, personalization, digital interaction, algorithmic recommendations
Procedia PDF Downloads 11725732 Secure and Privacy-Enhanced Blockchain-Based Authentication System for University User Management
Authors: Ali El Ksimi
Abstract:
In today's digital academic environment, secure authentication methods are essential for managing sensitive user data, including that of students and faculty. The rise in cyber threats and data breaches has exposed the vulnerabilities of traditional authentication systems used in universities. Passwords, often the first line of defense, are particularly susceptible to hacking, phishing, and brute-force attacks. While multi-factor authentication (MFA) provides an additional layer of security, it can still be compromised and often adds complexity and inconvenience for users. As universities seek more robust security measures, blockchain technology emerges as a promising solution. Renowned for its decentralization, immutability, and transparency, blockchain has the potential to transform how user management is conducted in academic institutions. In this article, we explore a system that leverages blockchain technology specifically for managing user accounts within a university setting. The system enables the secure creation and management of accounts for different roles, such as administrators, teachers, and students. Each user is authenticated through a decentralized application (DApp) that ensures their data is securely stored and managed on the blockchain. By eliminating single points of failure and utilizing cryptographic techniques, the system enhances the security and integrity of user management processes. We will delve into the technical architecture, security benefits, and implementation considerations of this approach. By integrating blockchain into user management, we aim to address the limitations of traditional systems and pave the way for the future of digital security in education.Keywords: blockchain, university, authentication, decentralization, cybersecurity, user management, privacy
Procedia PDF Downloads 2525731 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments
Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo
Abstract:
This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.Keywords: cloud, enhancing security, fog, IoT, telehealth
Procedia PDF Downloads 7825730 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 4125729 Facial Biometric Privacy Using Visual Cryptography: A Fundamental Approach to Enhance the Security of Facial Biometric Data
Authors: Devika Tanna
Abstract:
'Biometrics' means 'life measurement' but the term is usually associated with the use of unique physiological characteristics to identify an individual. It is important to secure the privacy of digital face image that is stored in central database. To impart privacy to such biometric face images, first, the digital face image is split into two host face images such that, each of it gives no idea of existence of the original face image and, then each cover image is stored in two different databases geographically apart. When both the cover images are simultaneously available then only we can access that original image. This can be achieved by using the XM2VTS and IMM face database, an adaptive algorithm for spatial greyscale. The algorithm helps to select the appropriate host images which are most likely to be compatible with the secret image stored in the central database based on its geometry and appearance. The encryption is done using GEVCS which results in a reconstructed image identical to the original private image.Keywords: adaptive algorithm, database, host images, privacy, visual cryptography
Procedia PDF Downloads 13025728 The EU’s Role in Exporting Digital Privacy and Security Standards: A Legal Framework for Global Normative Diffusion
Authors: Yuval Reinfeld
Abstract:
This paper explores the European Union’s expanding influence as a global regulatory power, particularly in the realms of legal, security, and privacy challenges within the digital landscape. As digital regulation becomes increasingly vital, the EU has positioned itself as a leading exporter of privacy and cybersecurity standards through landmark frameworks like the General Data Protection Regulation (GDPR), the Artificial Intelligence Act (AIA), and the Digital Services Act (DSA). These regulations have set global benchmarks, extending their influence well beyond Europe’s borders by shaping legal frameworks in third countries and guiding the development of global digital governance. Central to this regulatory diffusion is the European Court of Justice (CJEU), whose rulings consistently reinforce and extend the reach of EU standards on an international scale. Through mechanisms such as trade agreements, adequacy decisions, and multilateral cooperation, the EU has constructed a regulatory ecosystem that other jurisdictions increasingly adopt. This paper investigates key CJEU cases to illustrate how the EU’s legal instruments in privacy, security, and AI contribute to its role as a global standard-setter. By examining the intersection of digital governance, international law, and normative power, this research provides a thorough analysis of the EU’s regulatory impact on global privacy, cybersecurity, and AI frameworks.Keywords: digital privacy, cybersecurity, GDPR, European Union Law, artificial intelligence, global normative power
Procedia PDF Downloads 2425727 Acrosomal Integrity, DNA Integrity and Post-Thawing Motility of Goat Semen after Methionine Supplementation
Authors: K. A. El-Battawy, W. S. El-Nattat
Abstract:
The aim of the present investigation was to evaluate the impact of methionine on the preservation, acrosomal integrity, DNA integrity and post thawing motility of extended goat semen. Semen samples were diluted with a Tris-based extender containing the additive methionine 1.5, 2.5 and 5mM then the diluted samples were kept in glass tubes and cooled from 37°C to 5°C in a cold cabinet, and maintained at 5°C. Sperm motility (SM%), alive sperm (AS%), sperm abnormalities (SA%) acrosomal integrity and DNA integrity were determined at 5°C for periods of 0,24, 48and 72 h of liquid storage. Furthermore, the influence of methionine on post-thawing motility was assessed. The results elaborated that the addition of methionine and L-tyrosine particularly 2.5mM of methionine significantly improved SM% and reduced dead sperm %. Furthermore, the addition of 2.5mM methionine improved post-thawing motility (43.75 ± 1.25% vs. 32.50 ± 3.23 in the control group). Moreover, the frequency of acrosomal defects was lower in treated groups than in control. In conclusion, the addition of methionine induced remarkable physiological effects on goat semen quality during conservation for 7-days-long period at 5°C and improved its freezability.Keywords: methionine, acrosome, semen, cryopreservation
Procedia PDF Downloads 40525726 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 32025725 Empirical Analysis of the Global Impact of Cybercrime Laws on Cyber Attacks and Malware Types
Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke
Abstract:
The study focused on probing the effectiveness of online consumer privacy and protection laws, electronic transaction laws, privacy and data protection laws, and cybercrime legislation amid frequent cyber-attacks and malware types worldwide. An empirical analysis was engaged to uncover ties and causations between the stringency and implementation of these legal structures and the prevalence of cyber threats. A deliberate sample of seventy-eight countries (thirteen countries each from six continents) was chosen as sample size to study the challenges linked with trending regulations and possible panoramas for improving cybersecurity through refined legal approaches. Findings establish if the frequency of cyber-attacks and malware types vary significantly. Also, the result proved that various cybercrime laws differ statistically, and electronic transactions law does not statistically impact the frequency of cyber-attacks. The result also statistically revealed that the online Consumer Privacy and Protection law does not influence the total number of cyber-attacks. In addition, the results implied that Privacy and Data Protection laws do not statistically impact the total number of cyber-attacks worldwide. The calculated value also proved that cybercrime law does not statistically impact the total number of cyber-attacks. Finally, the computed value concludes that combined multiple cyber laws do not significantly impact the total number of cyber-attacks worldwide. Suggestions were produced based on findings from the study, contributing to the ongoing debate on the validity of legal approaches in battling cybercrime and shielding consumers in the digital age.Keywords: cybercrime legislation, cyber attacks, consumer privacy and protection law, detection, electronic transaction law, prevention, privacy and data protection law, prohibition, prosecution
Procedia PDF Downloads 4225724 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme
Procedia PDF Downloads 38025723 A Contribution to Blockchain Privacy
Authors: Malika Yaici, Feriel Lalaoui, Lydia Belhoul
Abstract:
As a new distributed point-to-point (P2P) technology, blockchain has become a very broad field of research, addressing various challenges, including privacy preserving, as is the case in all other technologies. In this work, a study of the existing solutions to the problems related to private life in general and in blockchains in particular is performed. User anonymity and transaction confidentiality are the two main challenges to the protection of privacy in blockchains. Mixing mechanisms and cryptographic solutions respond to this problem but remain subject to attacks and suffer from shortcomings. Taking into account these imperfections and the synthesis of our study, we present a mixing model without trusted third parties, based on group signatures, allowing reinforcing the anonymity of the users, the confidentiality of the transactions, with minimal turnaround time and without mixing costs.Keywords: anonymity, blockchain, mixing coins, privacy
Procedia PDF Downloads 1225722 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC
Procedia PDF Downloads 14425721 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors
Authors: João Filipe Papel, Tatsuji Munaka
Abstract:
With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living
Procedia PDF Downloads 10425720 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 7525719 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.Keywords: cloud compliance, cloud security, data governance, privacy protection
Procedia PDF Downloads 11625718 Ethical Artificial Intelligence: An Exploratory Study of Guidelines
Authors: Ahmad Haidar
Abstract:
The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI
Procedia PDF Downloads 9325717 Importance of Ethics in Cloud Security
Authors: Pallavi Malhotra
Abstract:
This paper examines the importance of ethics in cloud computing. In the modern society, cloud computing is offering individuals and businesses an unlimited space for storing and processing data or information. Most of the data and information stored in the cloud by various users such as banks, doctors, architects, engineers, lawyers, consulting firms, and financial institutions among others require a high level of confidentiality and safeguard. Cloud computing offers centralized storage and processing of data, and this has immensely contributed to the growth of businesses and improved sharing of information over the internet. However, the accessibility and management of data and servers by a third party raise concerns regarding the privacy of clients’ information and the possible manipulations of the data by third parties. This document suggests the approaches various stakeholders should take to address various ethical issues involving cloud-computing services. Ethical education and training is key to all stakeholders involved in the handling of data and information stored or being processed in the cloud.Keywords: IT ethics, cloud computing technology, cloud privacy and security, ethical education
Procedia PDF Downloads 32525716 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 33025715 Ethics Can Enable Open Source Data Research
Authors: Dragana Calic
Abstract:
The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions
Procedia PDF Downloads 28425714 Good Governance in Perspective: An Example of Transition from Corruption towards Integrity within a Developing Country (Pakistan)
Authors: Saifullah Khalid
Abstract:
Governance and good governance are among the main topics in international discussions about the success factors for social and economic development. The image of developing countries as for example Pakistan in this respect is bad (in TI Corruption Index nr. among countries). Additionally, the police are among the sectors and organizations which are seen as most corrupt in many countries. However, in case of Pakistan there seem to be exceptions to the rule, and improvement can be brought in specific police departments. This paper represents the findings of Islamabad traffic police (ITP). In Pakistan, the police, in general, have been stigmatized for being the most corrupt department in the country. However, the few recent examples of Motorway police and its replicated model of Islamabad traffic police changed the perception about police and policing. These police forces have shown that Policing in Pakistan can be changed for better. In this paper, the research question that is addressed is: How corrupt are (traffic) police forces in Pakistan and what factors influence corruption within that police force? And What lessons can be learned from that to improve police integrity? Both qualitative and quantitative tools are utilized for data collection. The overall picture of the factors is not so easy to interpret and summarise. Nevertheless paying a better salary does not seem to limit integrity violations, neither does recruitment and selection and leadership, while supervision and control, training and stimulating the positive and limiting the negative elements of culture appear to be important in curbing (sometimes specific) integrity violations in the context of Pakistani police forces. The study also leads to a number of suggestions for curbing corruption and other integrity violations in the Pakistan police.Keywords: corruption control, governance, integrity violations, Islamabad traffic police, Pakistan
Procedia PDF Downloads 21625713 Electronic Health Record System: A Perspective to Improve the Value of Services Rendered to Patients in Healthcare Organization in Rwanda, Case of CHUB and Hopital De Nemba
Authors: Mugabe Nzarama Gabriel
Abstract:
In Rwanda, many healthcare organizations are still using a paper based patients’ data record system although it still present weaknesses to share health patients’ information across different services when necessary. In developed countries, the EHR has been put in place to revolutionize the paper based record system but still the EHR has some challenges related to privacy, security, or interoperability. The purpose of this research was to assess the existing patients’ data record system in healthcare sector in Rwanda, see what an EHR can improve to the system in place and assess the acceptance of EHR as system which is interoperable, very secure and interoperable and see whether stakeholders are ready to adopt the system. The case based methodology was used and TAM theoretical framework to design the questionnaire for the survey. A judgmental sample across two cases, CHUB and Hopital de Nemba, has been selected and SPSS has been used for descriptive statistics. After a qualitative analysis, the findings showed that the paper based record is useful, gives complete information about the patient, protects the privacy of patients but it is still less secure and less interoperable. The respondents shown that they are ready to use the proposed EHR System and want it secure, capable of enforcing the privacy but still they are not all ready for the interoperability. A conclusion has been formulated; recommendations and further research have been proposed.Keywords: EHR system, healthcare service, TAM, privacy, interoperability
Procedia PDF Downloads 26725712 Factors of Social Network Platform Usage and Privacy Risk: A Unified Theory of Acceptance and Use of Technology2 Model
Abstract:
The trust and use of social network platforms by users are instrumental factors that contribute to the platform’s sustainable development. Studying the influential factors of the use of social network platforms is beneficial for developing and maintaining a large user base. This study constructed an extended unified theory of acceptance and use of technology (UTAUT2) moderating model with perceived privacy risks to analyze the factors affecting the trust and use of social network platforms. 444 participants completed our 35 surveys, and we verified the survey results by structural equation model. Empirical results reveal the influencing factors that affect the trust and use of social network platforms, and the extended UTAUT2 model with perceived privacy risks increases the applicability of UTAUT2 in social network scenarios. Social networking platforms can increase their use rate by increasing the economics, functionality, entertainment, and privacy security of the platform.Keywords: perceived privacy risk, social network, trust, use, UTAUT2 model
Procedia PDF Downloads 9925711 The Development of an Integrity Cultivating Module in School-Based Assessment among Malaysian Teachers: A Research Methodology
Authors: Eftah Bte. Moh Hj Abdullah, Abd Aziz Bin Abd Shukor, Norazilawati Binti Abdullah, Rahimah Adam, Othman Bin Lebar
Abstract:
The competency and integrity required for better understanding and practice of School-based Assessment (PBS) comes not only from the process, but also in providing the support or ‘scaffolding’ for teachers to recognize the student as a learner, improve their self-assessment skills, understanding of the daily teaching plan and its constructive alignment of the curriculum, pedagogy and assessment. The cultivation of integrity in PBS among the teachers is geared towards encouraging them to become committed and dedicated in implementing assessments in a serious, efficient manner, thus moving away from the usual teacher-focused approach to the student-focused approach. The teachers show their integrity via their professional commitment, responsibility and actions. The module based on the cultivation of integrity in PBS among Malaysian teachers aims to broaden the guidance support for teachers (embedded in the training), which consists of various domains to enable better evaluation of complex assessment tasks and the construction of suitable instrument for measuring the relevant cognitive, affective and psychomotor domains to describe the students’ achievement. The instrument for integrity cultivation in PBS has been developed and validated for measuring the effectiveness of the module constructed. This module is targeted towards assisting the staff in the Education Ministry, especially the principal trainers, teachers, headmasters and education officers to acquire effective intervention for improving the PBS assessors’ integrity and competency.Keywords: school-based assessment, assessment competency integrity cultivation, professional commitment, module
Procedia PDF Downloads 41025710 Study on Security and Privacy Issues of Mobile Operating Systems Based on Malware Attacks
Authors: Huang Dennis, Aurelio Aziel, Burra Venkata Durga Kumar
Abstract:
Nowadays, smartphones and mobile operating systems have been popularly widespread in our daily lives. As people use smartphones, they tend to store more private and essential data on their devices, because of this it is very important to develop more secure mobile operating systems and cloud storage to secure the data. However, several factors can cause security risks in mobile operating systems such as malware, malicious app, phishing attacks, ransomware, and more, all of which can cause a big problem for users as they can access the user's private data. Those problems can cause data loss, financial loss, identity theft, and other serious consequences. Other than that, during the pandemic, people will use their mobile devices more and do all sorts of transactions online, which may lead to more victims of online scams and inexperienced users being the target. With the increase in attacks, researchers have been actively working to develop several countermeasures to enhance the security of operating systems. This study aims to provide an overview of the security and privacy issues in mobile operating systems, identifying the potential risk of operating systems, and the possible solutions. By examining these issues, we want to provide an easy understanding to users and researchers to improve knowledge and develop more secure mobile operating systems.Keywords: mobile operating system, security, privacy, Malware
Procedia PDF Downloads 8825709 Verifiable Secure Computation of Large Scale Two-Point Boundary Value Problems Using Certificate Validation
Authors: Yogita M. Ahire, Nedal M. Mohammed, Ahmed A. Hamoud
Abstract:
Scientific computation outsourcing is gaining popularity because it allows customers with limited computing resources and storage devices to outsource complex computation workloads to more powerful service providers. However, it raises some security and privacy concerns and challenges, such as customer input and output privacy, as well as cloud cheating behaviors. This study was motivated by these concerns and focused on privacy-preserving Two-Point Boundary Value Problems (BVP) as a common and realistic instance for verifiable safe multiparty computing. We'll look at the safe and verifiable schema with correctness guarantees by utilizing standard multiparty approaches to compute the result of a computation and then solely using verifiable ways to check that the result was right.Keywords: verifiable computing, cloud computing, secure and privacy BVP, secure computation outsourcing
Procedia PDF Downloads 97