Search results for: antimicrobial sensitivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2584

Search results for: antimicrobial sensitivity

2494 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial

Authors: Bhavana V. Mohite, Satish V. Patil

Abstract:

Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.

Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite

Procedia PDF Downloads 285
2493 Antibacterial Hydrogels for Wound Care

Authors: Saba Atefyekta

Abstract:

Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound.

Keywords: antibacterial wound dressing, antimicrobial peptides, post-surgical wounds, infection

Procedia PDF Downloads 60
2492 A Review of Antimicrobial Strategy for Cotton Textile

Authors: C. W. Kan, Y. L. Lam

Abstract:

Cotton textile has large specific surfaces with good adhesion and water-storage properties which provide conditions for the growth and settlement of biological organisms. In addition, the soil, dust and solutes from sweat can also be the sources of nutrients for microorganisms [236]. Generally speaking, algae can grow on textiles under very moist conditions, providing nutrients for fungi and bacteria growth. Fungi cause multiple problems to textiles including discolouration, coloured stains and fibre damage. Bacteria can damage fibre and cause unpleasant odours with a slick and slimy feel. In addition, microbes can disrupt the manufacturing processes such as textile dyeing, printing and finishing operations through the reduction of viscosity, fermentation and mold formation. Therefore, a large demand exists for the anti-microbially finished textiles capable of avoiding or limiting microbial fibre degradation or bio fouling, bacterial incidence, odour generation and spreading or transfer of pathogens. In this review, the main strategy for cotton textile will be reviewed. In the beginning, the classification of bacteria and germs which are commonly found with cotton textiles will be introduced. The chemistry of antimicrobial finishing will be discussed. In addition, the types of antimicrobial treatment will be summarized. Finally, the application and evaluation of antimicrobial treatment on cotton textile will be discussed.

Keywords: antimicrobial, cotton, textile, review

Procedia PDF Downloads 341
2491 Antimicrobial, Antioxidant and Free Radical Scavenging Activities of Essential Oils Extracted from Six Eucalyptus Species

Authors: Sanaa K. Bardaweel, Mohammad M. Hudaib, Khaled A. Tawaha, Rasha M. Bashatwah

Abstract:

Eucalyptus species are well reputed for their traditional use in Asia as well as in other parts of the world; therefore, the present study was designed to investigate the antimicrobial and antioxidant activities associated with essential oils from different Eucalyptus species. Essential oils from the leaves of six Eucalyptus species, including: Eucalyptus woodwardi, Eucalyptus stricklandii, Eucalyptus salubris, Eucalyptus sargentii, Eucalyptus torquata and Eucalyptus wandoo were separated by hydrodistillation and dried over anhydrous sodium sulphate. DPPH, ferric reducing antioxidant power, and hydroxyl radical scavenging activity assays were carried out to evaluate the antioxidant potential of the oils. The results indicate that examined oils exhibit substantial antioxidant activities relative to ascorbic acid. Previously, these oils were evaluated for their antimicrobial activities, against wide range of bacterial and fungal strains, and they were shown to possess significant antimicrobial activities. In this study, further investigation into the growth kinetics of oil-treated microbial cultures was conducted. The results clearly demonstrate that the microbial growth was markedly inhibited when treated with sub-MIC concentrations of the oils. Taken together, the results obtained indicate a high potential of the examined essential oils as bioactive oils, for nutraceutical and medical applications, possessing significant antioxidant and anti microbial activities.

Keywords: antimicrobial, antioxidants, essential (volatile) oil, Eucalyptus

Procedia PDF Downloads 375
2490 The Possible Antioxidant, Hypoglycemic Effect and Antimicrobial Potential of Mangifera Indicia Leaves Aqueous Extract in Albino Rats

Authors: Sahar B. Ahmed, M. Mostafa Said, Mona I. Mohamed

Abstract:

Streptozotocin (STZ) caused a significant increase in blood glucose and malondialdehyde (MDA) levels in serum accompanied by a significant decrease in blood reduced glutathione (GSH) and superoxide dismutase (SOD) activities. Also, ALT, AST, albumin and urea were markedly affected by STZ injection. The oral administration of Mango leaves extract (MLE) one hour before STZ injection was significantly improved the blood glucose level, ALT, AST activities, albumin and urea that associated with the regulation of MDA, GSH and SOD levels. The antimicrobial activity of MLE showed a significant inhibitory activity against multidrug resistant gram positive and gram negative bacteria isolated from patients in Egyptian hospitals especially Salmonella typhi and typhimurium. In conclusion, results revealed the antioxidant, hypoglycemic effect and antimicrobial potentials of MLE under investigation. Further studies will be needed to investigate the prolonged period of MLE administration and its possible side effects.

Keywords: aqueous extract of mango leaves, STZ, antioxidant, hypoglycemic effect, antimicrobial potentials.

Procedia PDF Downloads 419
2489 The Investigation of the Antimicrobial Activities of Piper betle L.

Authors: Disaya Jaroensattayatham

Abstract:

Nowadays, infectious diseases are prevalent and severe health problems as they render the increment of casualty, illness, and global economic recession. Along with the emergence of antimicrobial resistance, the potency of typically used antibiotics can be affected to a considerable degree. As a result, unorthodox antibiotics have become an urgent issue in the pharmaceutical field. Piper betle L., known as betle leaf, has been used for many purposes, such as a traditional home remedy, and has shown its ability in inhibiting bacteria as well as fungus. Thus, in this study, the investigation of antimicrobial activities of the Piper betle L. extracts was carried out using the Agar disk-diffusion method and Broth microdilution, aiming to evaluate and determine its efficacy to inhibit bacterial and fungal growth of Staphylococcus aureus, Salmonella typhi, and Candida albicans. In the agar disk-diffusion test, the extracts of Piper betle L. gave the maximum zone of inhibition of 15.1 mm (S. aureus), 7.7 mm (S. typhi), and 11.7 mm (C. albicans), while its MIC values were 1000 µg/ml in S. aureus and greater than 2000 µg/ml in S. typhi and C. albicans. According to the results, the Piper betle L. obtains an antimicrobial activity and shows a higher effect towards gram-positive bacteria than gram-negative bacteria. To determine the mechanism behind its ability, more research is needed to be performed in the future.

Keywords: antimicrobial activity, Candida albicans, Piper betle L., Salmonella typhi, Staphylococcus aureus

Procedia PDF Downloads 147
2488 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms

Authors: M. A. Rubio, A. Urquia

Abstract:

Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.

Keywords: optimization, sensitivity, genetic algorithms, model calibration

Procedia PDF Downloads 403
2487 Evaluation of Antimicrobial Activity of Phenolic Compounds Extracted from Jordanian Juglans regia L.

Authors: Hamoud Alshammari, Adnan Almezani, Hamdan Alshammari, Faris Alharbi

Abstract:

In this study we have examined of antimicrobial activity for unripe Juglan Regia phenolic extracts against a wide range of pathogenic microorganisms. Walnut (Juglans regia L.) is a member of Juglandaceae family used as a remedy in folk medicine. Leaves, barks, fruits and husk (peel) reported to harbor distinctive medical effect. In our study, we examined the anti-microbial effect against a set of gram positive and negative bacteria and even we have tested them against eukaryotic candida strains in a concentration gradual manner. Ethyl acetate extract of J. regia had the best antibacterial activity when compared with ciprofloxacin. The Minimum inhibition concentration for S. aureus, P. aerogenosa and S. epidermidis MIC was 0.85 mg/mL.

Keywords: antimicrobial, J. regia, S. aureus, phytochemistry

Procedia PDF Downloads 174
2486 Relationship Salt Sensitivity and с825т Polymorphism of gnb3 Gene in Patients with Essential Hypertension

Authors: Aleksandr Nagay, Gulnoz Khamidullayeva

Abstract:

It is known that an unbalanced intake of salt (NaCI), lifestyle and genetic predisposition to pathology is a key component of the risk and the development of essential hypertension (EH). Purpose: To study the relationship between salt-sensitivity and blood pressure (BP) on systolic (SBP) and diastolic (DBP) blood pressure, depending on the C825T polymorphism of GNB3 in individuals of Uzbek nationality with EH. Method: studied 148 healthy and 148 patients with EH with I-II degree (WHO/ISH, 2003) with disease duration 6,5±1,3 years. Investigation of the gene GNB3 was produced by PCR-RFLP method. Determination of salt-sensitivity was performed by the method of R. Henkin. Results: For a comparative analysis of BP, the groups with carriage of CТ and TT genotypes were combined. The analysis showed that carriers of CC genotype and low salt-sensitivity were determined by higher levels of SBP compared with carriers of CT and TT genotypes, and low salt-sensitivity of SBP: 166,2±4,3 against 158,2±9,1 mm Hg (p=0,000). A similar analysis on the values of DBP also showed significantly higher values of blood pressure in carriers of CC genotype DBP: 105,8±10,6 vs. 100,5±7,2 mm Hg, respectively (p=0,001). The average values of SBP and DBP in groups with carriers of CC genotype at medium or high salt-sensitivity in comparison with carriers of CT or TT genotype did not differ statistically SBP: 165,0±0,1 vs. 160,0±8,6 mm Hg (p=0,275) and DBP: 100,1±0,1 vs. 101,6±7,6 mm Hg (p=0,687), respectively. Conclusion: It is revealed that in patients with EH CC genotype of the gene GNB3 given salt-sensitivity has a negative effect on blood pressure profile. Since patients with EH with the CC genotype of GNB3 gene with low-salt taste sensitivity is determined by a higher level of blood pressure, both on SBP and DBP.

Keywords: salt sensitivity, essential hypertension EH, blood pressure BP, genetic predisposition

Procedia PDF Downloads 252
2485 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds

Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya

Abstract:

Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.

Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS

Procedia PDF Downloads 482
2484 Comparison of Antimicrobial Activity of Momordica cochinchinesis and Pinus kesiya Extracts

Authors: Pattaramon Pongjetpong

Abstract:

In recent years, infectious diseases have increased considerably, and they are amongst the most common leading causes of death all over the world. Several medicinal plants are well known to contain active constituents such as flavonoids, carotenoids, and phenolic compounds, which are plausible candidates for therapeutic purposes. This study aimed to examine the antimicrobial activities of M. cochinchinensis and P. kesiya extracts using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. In this study, Momordica cochinchinensis and Pinus kesiya extracts are investigated for antibacterial activity against Staphylococcus aureus. The results showed that S. aureus was susceptible to P. kesiya extracts with an MIC value of 62.5 µg/ml, while M. cochinchinensis showed MIC against S. aureus was greater than 2000 µg/ml. In summary, P. kesiya extract showed potent antibacterial activity against S. aureus, which could greatly value developing as adjuvant therapy for infectious diseases. However, further investigation regarding purification of the active constituents as well as a determination of the mechanism of antimicrobial action of P. kesiya active compound should be performed to identify the molecular target of the active compounds.

Keywords: antimicrobial activity, Momordica cochinchinensis, Pinus kesiya, Staphylococcus aureus

Procedia PDF Downloads 179
2483 Bacterial Decontamination of Nurses' White Coats by Application of Antimicrobial Finish

Authors: Priyanka Gupta, Nilanjana Bairagi, Deepti Gupta

Abstract:

New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections.

Keywords: antimicrobial finish, bacteria, infection control, silver, white coat

Procedia PDF Downloads 186
2482 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties

Authors: Roshank Haghighat, Laleh Maleknia

Abstract:

In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.

Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2

Procedia PDF Downloads 327
2481 Study of the Antimicrobial Potential Of a Rich Polyphenolic Extract Obtained from Cytisus scoparius

Authors: Lorena G. Calvo, Marta Lores, Trinidad de Miguel

Abstract:

Natural extracts containing high polyphenolic concentration possess antibacterial and antifungal activity. The present research characterizes a hydro-organic extract with a high polyphenolic content as an antimicrobial candidate. As a result of this composition, the extract showed pronounced bioactivities with potential uses in agricultural, veterinary, pharmaceutical, and cosmetic industries. Polyphenol compounds were extracted by using hydro-organic solvent mixtures from the shrub Cytisus scoparius. The in vitro antimicrobial activity of this extract was evaluated on Gram-positive and Gram-negative bacteria and the fungus Candida albicans. Microbial species investigated, Bacillus cereus, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, are causing agents of several human and animal diseases. The extract showed activity against all tested species. So, it could be used for the development of biocides to control a wide range of pathogenic agents and contribute to the creation of economic and eco-friendly alternatives to antibiotics.

Keywords: antimicrobial properties, antioxidant properties, Cytisus scoparius, polyphenolic extract

Procedia PDF Downloads 114
2480 Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles

Authors: Kyung Hwa Hong

Abstract:

The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria.

Keywords: spent coffee grounds, cotton, natural finishing agent, antioxidant activity, antimicrobial activity

Procedia PDF Downloads 135
2479 Antimicrobial Activity of Nauclea lotifolia (African Peach) Crude Extracts against Some Pathogenic Microorganism

Authors: Muhammad Isah Legbo

Abstract:

The phytochemical screening and antimicrobial activity of Nauclea lotifolia fruit, leaf and stem-bark extracts at various concentration of (20.0,10.0, 5.0, and 2.5 mg/ml) were evaluated against some pathogenic microorganisms such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Staphylococcus aureus, Aspergillus niger and Candida albicans. The antimicrobial activity was assayed using agar well diffusion method. The result obtained show appreciable inhibitory effort of acetone, aqueous and methanolic extracts of Nauclea lotifolia. However, result obtained was less active compared to that of the control antibiotic (Ciprofloxacillin). The minimum inhibitory concentration (MIC) was determined using serial doubling dilution method and ranged from 5.0-10.0mg/ml, while the minimum bactericidal concentration (MBC) was determined by plating various dilution of extracts without turbidity and the result ranged from 5.0-7.5mg/ml. The phytochemical screening revealed the presence of alkaloid, anthraquinones, flavonoids, resin, steroid and saponin. The activities of the plant extract therefore justify their utilization in the treatment of various ailments associated with the test organism.

Keywords: Nauclea, lotifolia, antimicrobial, pathogens, saponin, extract

Procedia PDF Downloads 382
2478 Digital Antimicrobial Thermometer for Axilliary Usage: A New Device for Measuring the Temperature of the Body for the Reduction of Cross-Infections

Authors: P. Efstathiou, E. Kouskouni, Z. Manolidou, K. Karageorgou, M. Tseroni, A. Efstathiou, V. Karyoti, I. Agrafa

Abstract:

Aim: The aim of this prospective comparative study is to evaluate the reduction of microbial flora on the surface of an axillary digital thermometer, made of antimicrobial copper, in relation with a common digital thermometer. Material – Methods: A brand new digital electronic thermometer implemented with antimicrobial copper (Cu 70% - Nic 30%, low lead) on the two edges of the device (top and bottom: World Patent Number WO2013064847 and Register Number by the Hellenic Copper Development Institute No 11/2012) was manufactured and a comparative study with common digital electronic thermometer was conducted on 18 ICU (Intensive Care Unit) patients of three different hospitals. The thermometry was performed in accordance with the projected International Nursing Protocols for body temperature measurement. A total of 216 microbiological samples were taken from the axillary area of the patients, using both of the investigated body temperature devises. Simultaneously the “Halo” phenomenon (phenomenon “Stefanis”) was studied at the non-antimicrobial copper-implemented parts of the antimicrobial digital electronic thermometer. Results: In all samples collected from the surface of the antimicrobial electronic digital thermometer, the reduction of microbial flora (Klebsiella spp, Staphylococcus aureus, Staphylococcus epidermitis, Candida spp, Pneudomonas spp) was progressively reduced to 99% in two hours after the thermometry. The above flora was found in the axillary cavity remained the same in common thermometer. The statistical analysis (SPSS 21) showed a statistically significant reduction of the microbial load (N = 216, < 0.05). Conclusions: The hospital-acquired infections are linked to the transfer of pathogens due to the multi-usage of medical devices from both health professionals and patients, such as axillary thermometers. The use of antimicrobial digital electronic thermometer minimizes microbes' transportation between patients and health professionals while having all the conditions of reliability, proper functioning, security, ease of use and reduced cost.

Keywords: antimicrobial copper, cross infections, digital thermometers, ICU

Procedia PDF Downloads 376
2477 Synthesis of Brominated Pyrazoline Derived from Chalcone and Its Antimicrobial Activity

Authors: Annisa I. Reza, Jasril Karim

Abstract:

Despite the availability of antimicrobial agents in the market, the urge to study and find other chemical compounds with the better potential of replacing them still tempting the scientists. This experiment is in the aim to explore a novel brominated pyrazoline ring which was made from intermediate chalcone as a candidate to answer the challenge. Using green chemistry approach by microwave irradiation from domestic oven, both known chalcone and 5-(2-bromophenyl)-3-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazole were successfully synthesized. Pyrazoline’s structure was confirmed based on UV, IR, ¹H-NMR, ¹³C-NMR and MS and together with its intermediate were examined against some microorganisms (Bacillus subtilis, Escherichia coli, and Candida albicans) under agar diffusion method. The results collected during experiment revealed that both tested compounds showed weak activity on B.subtilis which was proven by a zone of inhibitions, while there was no zone of inhibitions observed in E. coli and C. albicans. This is suggested because of the bulky structure around pyrazoline could not provide the main ring to interact with microbial’s cell wall. The study shows that the proposed compound had the low capability as a promising antimicrobial agent, yet it still enriches the information about pyrazoline ring.

Keywords: antimicrobial, chalcone, microwave irradiation, pyrazoline

Procedia PDF Downloads 124
2476 A Prospective Audit to Look into Antimicrobial Prescribing in the Clinical Setting: In a Teaching Hospital in the UK

Authors: Richa Sinha, Mohammad Irfan Javed, Sanjay Singh

Abstract:

Introduction: Good antimicrobial prescribing reduces length of stay in hospital, risk of adverse events, antimicrobial resistance, and unnecessary hospital expenditure. The aim of this prospective audit was to identify any problems with antimicrobial prescribing including documentation of the relevant aspects as well as appropriateness of antibiotics use. The audit was conducted on the surgical wards in a teaching hospital in the UK. Methods: Standards included the indication, duration, choice, and prescription of antibiotic should be in line with current Regional Guidelines and should be clearly documented on the prescription chart. There should be an entry in each patients’ medical record of the diagnosis and indication for each acute antibiotic prescription issued. All prescriptions should clearly document the route, frequency and dose of antibiotic. Data collection was done for 2 weeks in the month of March 2014. A proforma including all the questions above was completed for all the patients. The results were analysed using Excel. Results: 35 patients in total were selected for the audit. 85.7% of patients had indication of antibiotic documented on the prescription chart and 68.5% of patients had indication documented in the notes. The antibiotic used was in line with hospital guidelines in 45.7% of patients, however, in a further 28.5% of patients the reason for the antibiotic prescription was microbiology approved. Therefore, in total 74.2% of patients had been prescribed appropriate antibiotics. The duration of antibiotic was documented in 68.6% of patients and the antibiotic was reviewed in 37.1% of patients. The dose, frequency and route was documented clearly in 100% of patients. Conclusion: Overall, prescribing can be improved on the surgical wards in this hospital. Only 37.1% of patients had clear documentation of a review of antibiotics. It may be that antibiotics have been reviewed but this should be clearly highlighted on the prescription chart or the notes. Failure to review antibiotics can lead to poor patient care and antimicrobial resistance and therefore it is important to address this. It is also important to address the appropriateness of antibiotics as inappropriate antibiotic prescription can lead to failure of treatment as well as antimicrobial resistance. The good points from the audit was that all patients had clear documentation of dose, route and frequency which is extremely important in the administration of antibiotics. Recommendations from this audit included to emphasize good antimicrobial prescribing at induction (twice yearly), an antimicrobial handbook for junior doctors, and re-audit in 6 months time.

Keywords: prescribing, antimicrobial, indication, duration

Procedia PDF Downloads 278
2475 Phytochemical Study and Antimicrobial Activity of Nigella sativa L. (Renunculaceae) in Algeria

Authors: L. Bendifallah, F. Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane

Abstract:

Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.

Keywords: Nigella sativa, phytochemistry, antimicrobial activity, Algeria

Procedia PDF Downloads 298
2474 Phytochemical Study and Antimicrobial Activity of Nigella Sativa L. (Renunculaceae) in Algeria

Authors: L. Bendifallah, F.Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane

Abstract:

Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.

Keywords: Algeria, antimicrobial activity, Nigella sativa, phytochemistry

Procedia PDF Downloads 540
2473 Sensitivity Analysis of Movable Bed Roughness Formula in Sandy Rivers

Authors: Mehdi Fuladipanah

Abstract:

Sensitivity analysis as a technique is applied to determine influential input factors on model output. Variance-based sensitivity analysis method has more application compared to other methods because of including linear and non-linear models. In this paper, van Rijn’s movable bed roughness formula was selected to evaluate because of its reasonable results in sandy rivers. This equation contains four variables as: flow depth, sediment size,bBed form height and bed form length. These variable’s importance was determined using the first order of Fourier Amplitude Sensitivity Test. Sensitivity index was applied to evaluate importance of factors. The first order FAST based sensitivity indices test, explain 90% of the total variance that is indicating acceptance criteria of FAST application. More value of this index is indicating more important variable. Results show that bed form height, bed form length, sediment size and flow depth are more influential factors with sensitivity index: 32%, 24%, 19% and 15% respectively.

Keywords: sdensitivity analysis, variance, movable bed roughness formula, Sandy River

Procedia PDF Downloads 230
2472 Antimicrobial Effect of Essential Oil of Plant Schinus molle on Some Bacteria Pathogens

Authors: Mehani Mouna, Ladjel segni

Abstract:

Humans use plants for thousands of years to treat various ailments, In many developing countries, Much of the population relies on traditional doctors and their collections of medicinal plants to cure them. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The aim of our study is to determine the antimicrobial effect of essential oils of the plant Schinus molle on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The test adopted is based on the diffusion method on solid medium (Antibiogram), This method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plant Schinus molle has a different effect on the resistance of germs: For Pseudomonas aeruginosa strain is a moderately sensitive with an inhibition zone of 10 mm, Further Antirobactere, Escherichia coli and Proteus are strains that represent a high sensitivity, A zone of inhibition equal to 14.66 mm.

Keywords: Essential oil, microorganism, antibiogram, shinus molle

Procedia PDF Downloads 316
2471 The Antimicrobial Activity of the Essential Oil of Salvia officinalis Harvested in Boumerdes

Authors: N. Mezıou-Cheboutı, A. Merabet, N. Behidj, F. Z. Bissaad

Abstract:

The Algeria by its location, offers a rich and diverse vegetation. A large number of aromatic and medicinal plants grow spontaneously. The interest in these plants has continued to grow in recent years. Their particular properties due to the essential oil fraction can be utilized to treat microbial infections. To this end, and in the context of the valuation of the Algerian flora, we became interested in the species of the family Lamiaceae which is one of the most used as a global source of spices and extracts strong families antimicrobial potency. The plant on which we have based our choice is a species of sage "Salvia officinalis" from the Isser localized region within the province of Boumerdes. This work focuses on the study of the antimicrobial activity of essential oil extracted from the leaves of salvia officinalis. The extraction is carried out by HE hydrodistillation and reveals a yield of 1.06℅. The study of the antimicrobial activity of the essential oil by the method of at aromatogramme shown that Gram positive bacteria are most susceptible (Staphylococcus aureus and Bacillus subtilis) with a strong inhibition of growth. The yeast Candida albicans fungus Aspergillus niger and have shown moderately sensitive.

Keywords: Salvia officinalis, steam distillation, essential oil, aromatogram, anti-microbial activity

Procedia PDF Downloads 288
2470 Antimicrobial Activity of Functionalized Alpaca Fabrics with Silver Nanoparticles

Authors: Gina Zavaleta-Espejo, Segundo R. Jáuregui-Rosas, Fanny V. Samanamud-Moreno, José Saldaña Jiménez, Anibal Felix-Quintero, Víctor Montero-Del Aguila, Elsi Mejía-Uriarte

Abstract:

Vicugnapacos "alpaca" fabrics are considered special for their finesse, and the garments in the textile market are very luxurious. It has many special characteristics such as antiallergic, soft, hygroscopic, among others. In this sense, the research aimed to evaluate the antimicrobial activity of alpaca fabrics functionalized with silver nanoparticles on the bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. For the functionalization of the fabrics, AgNO3 and different concentrations of trisodium citrate (TSC) 2, 6, and 10 mg. Tissue characterization was performed using Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The determination of the antimicrobial activity of the alpaca tissues was made by the Kirby-Bauer method with alpaca tissue discs functionalized with silver nanoparticles, an experimental design was made in completely randomized blocks with three treatments and a negative control with three repetitions. The results showed that inhibition halos were formed for both bacteria, therefore, the functionalized tissues have a high antimicrobial activity, whose mechanism of action is attributed to the free radicals (ROS) generated by the nanoparticles that cause oxidative damage to the bacteria. proteins and lipids of the bacterial cell wall.

Keywords: antimicrobial, animal fibers, fabrics, functionalization, trisodium citrate

Procedia PDF Downloads 111
2469 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones

Authors: Sakshi Gupta, Seema Joshi

Abstract:

Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.

Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity

Procedia PDF Downloads 27
2468 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus aureus of Isolated From Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia

Authors: Haftay Abraha Tadesse

Abstract:

Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in human and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and public health significance for Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Sociodemographic data and public health significance were collected using predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using ice box to Mekelle University, College of Veterinary Sciences for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by disc diffusion method. Data obtained were cleaned and entered in to STATA 22.0 and logistic regression model with odds ratio were calculated to assess the association of risk factors with bacterial contamination. P-value < 0.05 was considered as statistically significant. Results: In present study, 88 out of 250 (35.2%) were found to be contamination with Staphylococcus aureus. Among the raw meat specimens to be positivity rate of Staphylococcus aureus were 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risk factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35-3.35) were found to be statistically significant and ha ve associated with Staphylococcus aureus contamination. All isolates thirty sevevn of Staphyloco ccus aureus were checked displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. whereas the showed resistance of cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aur eu isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin whereas the showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi drug resistance pattern for Staphylococcus aureus were 90% and 100% of butchery and abattoirs houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the developed of hand washing behavior, and availability of safe water in the butchery houses to reduce burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always as a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics. Key words: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia,

Keywords: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia, staphylococcus aureuse, MDR

Procedia PDF Downloads 38
2467 Antimicrobial Activity of Ethnobotanically Selected Medicinal Plants Used in the Treatment of Sexually Transmitted Diseases

Authors: Thilivhali Emmanuel Tshikalange, Phiwokuhle Mamba

Abstract:

Ten medicinal plants used traditionally in the treatment of sexually transmitted diseases (STDs) and urinary tract infections (UTIs) were selected from an ethnobotanical database developed in Mpumalanga. The plants were investigated for their antimicrobial activity against five bacterial strains (Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Neisseria gonorrhoeae and Staphylococcus aureus) and one fungal strain (Candida albicans). Eight of the plants inhibited the growth of all microorganisms at a concentration range of 0.4 mg/ml to 12.5 mg/ml. Acacia karroo showed the most promising antimicrobial activity, with a minimum inhibitory concentration (MIC) of 0.4 mg/ml on Staphylococcus aureus and 0.8 mg/ml on Neisseria gonorrhoeae. All ten plants were further investigated for their antioxidant activities using the DPPH scavenging method. Acacia karroo and Rhoicissus tridentata subsp. cuneifolia showed good antioxidant activity with IC50 values of 0.83 mg/ml and 0.06 mg/ml, respectively. The toxicity of plants was determined using the XTT reduction method against Vero cells. None of the ten plants showed toxicity on the cells. The obtained results confirmed that Acacia karroo and possibly Rhoicissus tridentata subsp. cuneifolia have the potential of being used as antimicrobial agents in the treatment of STDs and UTIs. These results support and validate traditional use of medicinal plants studied.

Keywords: antimicrobial, antioxidant, Neisseria gonorrhoeae, sexually transmitted diseases

Procedia PDF Downloads 309
2466 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 47
2465 Antimicrobial Activity of Some Alimentary and Medicinal Plants

Authors: Akrpoum Souad, Lalaoui Korrichi

Abstract:

Vicia faba L.,Vaccinium macrocarpon, Punica granatum, Lavandula officinalis, Artemisia absinthium, Linum capitatum and Camellia sinensis were frequently used in our alimentation. In this study, we have tested the antimicrobial activity of their ethanolic and methanolic extracts on some pathogen bacteria, then their ability to in vivo inhibit the growth of Strepcoccus pneumonia. The phytochemical screening has given the composition of the most active extracts. According to the obtained results, the ethanolic extract of Lavendula. officinalis and A absinthium has shown an inhibition of all the tested strains of becteria3. The ethanolic extract of L. officinalis has given the highest activity against S. pneumoniae, followed by the methanolic extract of C. sinensis 1, 2 and P. granatum. The phytochemical screening showed that the most active extracts contained mainly naturels compounds.

Keywords: plants, extracts, antimicrobial activity, streptococcus pneumoniae, phytochemical screening

Procedia PDF Downloads 480