Search results for: ZBTB17 gene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1508

Search results for: ZBTB17 gene

1418 Quantitative Evaluation of Endogenous Reference Genes for ddPCR under Salt Stress Using a Moderate Halophile

Authors: Qinghua Xing, Noha M. Mesbah, Haisheng Wang, Jun Li, Baisuo Zhao

Abstract:

Droplet digital PCR (ddPCR) is being increasingly adopted for gene detection and quantification because of its higher sensitivity and specificity. According to previous observations and our lab data, it is essential to use endogenous reference genes (RGs) when investigating gene expression at the mRNA level under salt stress. This study aimed to select and validate suitable RGs for gene expression under salt stress using ddPCR. Six candidate RGs were selected based on the tandem mass tag (TMT)-labeled quantitative proteomics of Alkalicoccus halolimnae at four salinities. The expression stability of these candidate genes was evaluated using statistical algorithms (geNorm, NormFinder, BestKeeper and RefFinder). There was a small fluctuation in cycle threshold (Ct) value and copy number of the pdp gene. Its expression stability was ranked in the vanguard of all algorithms, and was the most suitable RG for quantification of expression by both qPCR and ddPCR of A. halolimnae under salt stress. Single RG pdp and RG combinations were used to normalize the expression of ectA, ectB, ectC, and ectD under four salinities. The present study constitutes the first systematic analysis of endogenous RG selection for halophiles responding to salt stress. This work provides a valuable theory and an approach reference of internal control identification for ddPCR-based stress response models.

Keywords: endogenous reference gene, salt stress, ddPCR, RT-qPCR, Alkalicoccus halolimnae

Procedia PDF Downloads 104
1417 Gene Expression Profile Reveals Breast Cancer Proliferation and Metastasis

Authors: Nandhana Vivek, Bhaskar Gogoi, Ayyavu Mahesh

Abstract:

Breast cancer metastasis plays a key role in cancer progression and fatality. The present study examines the potential causes of metastasis in breast cancer by investigating the novel interactions between genes and their pathways. The gene expression profile of GSE99394, GSE1246464, and GSE103865 was downloaded from the GEO data repository to analyze the differentially expressed genes (DEGs). Protein-protein interactions, target factor interactions, pathways and gene relationships, and functional enrichment networks were investigated. The proliferation pathway was shown to be highly expressed in breast cancer progression and metastasis in all three datasets. Gene Ontology analysis revealed 11 DEGs as gene targets to control breast cancer metastasis: LYN, DLGAP5, CXCR4, CDC6, NANOG, IFI30, TXP2, AGTR1, MKI67, and FTH1. Upon studying the function, genomic and proteomic data, and pathway involvement of the target genes, DLGAP5 proved to be a promising candidate due to it being highly differentially expressed in all datasets. The study takes a unique perspective on the avenues through which DLGAP5 promotes metastasis. The current investigation helps pave the way in understanding the role DLGAP5 plays in metastasis, which leads to an increased incidence of death among breast cancer patients.

Keywords: genomics, metastasis, microarray, cancer

Procedia PDF Downloads 97
1416 Mutational Analysis of DNase I Gene in Diabetic Patients

Authors: Hateem Zafar Kayani, Nageen Hussain

Abstract:

The main aim is to analyze the mutations of DNASE I gene in diabetic patients. A total of 120 diabetes patients and 120 controls were sampled. The total number of male diabetic patients included in the study was 79 (66%) while female patients were 41 (34%) in number. Exon 8 of the DNASE I gene was amplified by using thermo cycler. The possible band of interest was located at 165 base pairs. Two samples showed similar missense mutations at 127th position of exon 8 which replaced amino acid Arginine (Arg) to Glutamine (Gln). All controls showed no mutations. The association of diabetes with different levels of blood pressure and body mass index (BMI) were found to be significant.

Keywords: deoxyribonuclease I, polymerase chain reaction, insulin-dependent diabetes mellitus, non-insulin dependent diabetes mellitus

Procedia PDF Downloads 325
1415 Ethical Considerations in In-Utero Gene Editing

Authors: Shruti Govindarajan

Abstract:

In-utero gene editing with CRISPR-Cas9 opens up new possibilities for treating genetic disorders during pregnancy while still in mother’s womb. By targeting genetic mutations in the early stages of fetal development, this approach could potentially prevent severe conditions—like cystic fibrosis, sickle cell anemia, and muscular dystrophy—from causing harm. CRISPR-Cas9, which allows precise DNA edits, could be delivered into fetal cells through vectors such as adeno-associated viruses (AAVs) or nanoparticles, correcting disease-causing mutations and possibly offering lifelong relief from these disorders. For families facing severe genetic diagnoses, in-utero gene editing could provide a transformative option. However, technical challenges remain, including ensuring that gene editing only targets the intended cells and verifying long-term safety. Ethical considerations are also at the forefront of this technology. The editing of a fetus's genes brings up difficult questions about consent, especially since these genetic changes will affect the child’s entire life without their input. There's also concern over possible unintended side effects, or changes passed down to future generations. Moreover, if used beyond therapeutic purposes, this technology could be misused for ‘enhancements,’ like selecting for certain physical or cognitive traits, raising concerns about inequality and social pressures. In this way, in-utero gene editing brings both exciting potential and complex moral questions. As research progresses, addressing these scientific and ethical concerns will be key to ensuring that this technology is used responsibly, prioritizing safety, fairness, and a focus on alleviating genetic disease. A cautious and inclusive approach, along with clear regulations, will be essential to realizing the benefits of in-utero gene editing while protecting against unintended consequences.

Keywords: in-utero gene editing, CRISPR, bioethics, genetic disorder

Procedia PDF Downloads 8
1414 Prognostic Implication of Nras Gene Mutations in Egyptian Adult Acute Myeloid Leukemia

Authors: Doaa M. Elghannam, Nashwa Khayrat Abousamra, Doaa A. Shahin, Enas F. Goda, Hanan Azzam, Emad Azmy, Manal Salah El-Din

Abstract:

Background: The pathogenesis of acute myeloid leukemia (AML) involves the cooperation of mutations promoting proliferation/survival and those impairing differentiation. Point mutations of the NRAS gene are the most frequent somatic mutations causing aberrant signal-transduction in acute myeloid leukemia (AML). Aim: The present work was conducted to study the frequency and prognostic significance of NRAS gene mutations (NRASmut) in de novo Egyptian adult AML. Material and methods: Bone marrow specimens from 150 patients with de novo acute myeloid leukemia and controls were analyzed by genomic PCR-SSCP at codons 12, 13 (exon 1), and 61 (exon 2) for NRAS mutations. Results: NRAS gene mutations was found in 19/150 (12.7%) AML cases, represented more frequently in the FAB subtype M4eo (P = 0.028), and at codon 12, 13 (14of 19; 73.7%). Patients with NRASmut had a significant lower peripheral marrow blasts (P = 0.004, P=0.03) and non significant improved clinical outcome than patients without the mutation. Complete remission rate was (63.2% vs 56.5%; p=0.46), resistant disease (15.8% vs 23.6%; p=0.51), three years overall survival (44% vs 42%; P = 0.85) and disease free survival (42.1% vs 38.9%, P = 0.74). Multivariate analysis showed that age was the strongest unfavorable factor for overall survival (relative risk [RR], 1.9; P = .002), followed by cytogenetics (P = .004). FAB types, NRAS mutation, and leukocytosis were less important. Conclusions: NRAS gene mutation frequency and spectrum differ between biologically distinct subtypes of AML but do not significantly influence prognosis and clinical outcome.

Keywords: NRAS Gene, egyptian adult, acute myeloid leukemia, cytogenetics

Procedia PDF Downloads 99
1413 Variation in Carboxylesterase Activity in Spodoptera litura Fabricious (Noctuidae: Lepidoptera) Populations from India

Authors: V. Karuppaiah, J. C. Padaria, C. Srivastava

Abstract:

The tobacco caterpillar, Spodoptera litura Fab (Lepidoptera: Noctuidae) is a polyphagous pest various field and horticulture crops in India. Pest had virtually developed resistance to all commonly used insecticides. Enhanced detoxification is the prime mechanism that is dictated by detoxification different enzymes and carboxylesterase is one of the major enzyme responsible development of resistance. In India, insecticide resistance studies on S. litura are mainly deployed on detoxification enzymes activity and investigation at gene level alteration i.e. at nucleotide level is very merger. In the present study, we collected the S. litura larvae from three different cauliflower growing belt viz., IARI, New Delhi (Delhi), Palari, Sonepat (Haryana) and Varanasi (Uttar Pradesh) to study the role of carboxylesterase activity and its gene level variation The CarE activity was measured using UV-VIS spectrophotometer with 3rd instar larvae of S. litura. The elevated activity of CarE was observed in Sonepat strain (28.09 ± 0.09 µmol/min/mg of protein) followed by Delhi (26.72 ± 0.04 µmol/min/mg of protein) and Varanasi strain (10.00 ± 0.44 µmol/min/mg of protein) of S. litura. The genomic DNA was isolated from 3rd instar larvae and CarE gene was amplified using a primer sequence, F:5’tccagagttccttgtcaggcac3’; R:5’ctgcatcaagcatgtctc3. CarE gene, about 500bp was partially amplified, sequenced and submitted to NCBI (Accession No. KF835886, KF835887 and KF835888). The sequence data revealed polymorphism at nucleotide level in all the three strains and gene found to have 88 to 97% similarity with previous available nucleotide sequences of S. litura, S. littoralis and S. exiqua. The polymorphism at the nucleotide level could be a reason for differential activity of carboxylesterase enzymes among the strains. However, investigation at gene expression level would be useful to analyze the overproduction of carboxylesterase enzyme.

Keywords: carboxylesterase, CarE gene, nucleotide polymorphism, insecticide resistance, spodoptera litura

Procedia PDF Downloads 922
1412 Gene Distribution of CB1 Receptor rs2023239 in Thailand Cannabis Patients

Authors: Tanyaporn Chairoch

Abstract:

Introduction: Cannabis is a drug to treat patients with many diseases such as Multiple sclerosis, Alzheimer’s disease, and Epilepsy, where theycontain many active compounds such as delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Especially, THC is the primary psychoactive ingredient in cannabis and binds to cannabinoid 1 (CB1) receptors. Moreover, CB1 is located on the neocortex, hippocampus, basal ganglia, cerebellum, and brainstem. In previous study, we found the association between the variant of CB1recptors gene (rs2023239) and decreased effect of nicotine reinforcement in patients. However, there are no data describing whether the distribution of CB1 receptor gene is a genetic marker for Thai patients who are treated with cannabis. Objective: Thus, the aim of this study we want to investigate the frequency of the CB1 receptor gene in Thai patients. Materials and Methods: All of sixty Thai patients received the medical cannabis for treatment who were recruited in this study. DNA will be extracted from EDTA whole blood by Genomic DNA Mini Kit. The genotyping of CNR1 gene (rs 2023239) was genotyped by the TaqMan real time PCR assay (ABI, Foster City, CA, USA).and using the real-time PCR ViiA7 (ABI, Foster City, CA, USA). Results: We found thirty-eight (63.3%) Thai patients were female, and twenty-two (36.70%) were male in this study with median age of 45.8 (range19 – 87 ) years. Especially, thirty-two (53.30%) medical cannabis tolerant controls were female ( 55%) and median age of52.1 (range 27 – 79 ) years. The most adverse effects for medical cannabis treatment was tachycardia. Furthermore, the number of rs 2023239 (TT) carriers was 26 of 27 (96.29%) in medical cannabis-induced adverse effects and 32 of 33 (96.96%) in tolerant controls. Additionally, rs 2023239 (CT) variant was found just only one of twenty-seven (3.7%) in medical cannabis-induced adverse effects and 1 of 33 (3.03%) in tolerant controls. Conclusions: The distribution of genetic variant in CNR1 gene might serve as a pharmacogenetics markers for screening before initiating the therapy with medical cannabis in Thai patients.

Keywords: cannabis, pharmacogenetics, CNR1 gene, thai patient

Procedia PDF Downloads 110
1411 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression

Authors: K. Julia Rose Mary, Victor Arokia Doss

Abstract:

Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.

Keywords: CREB, L-LTP, mathematical modeling, simulation

Procedia PDF Downloads 294
1410 Bean in Turkey: Characterization, Inter Gene Pool Hybridization Events, Breeding, Utilizations

Authors: Faheem Shahzad Baloch, Muhammad Azhar Nadeem, Muhammad Amjad Nawaz, Ephrem Habyarimana, Gonul Comertpay, Tolga Karakoy, Rustu Hatipoglu, Mehmet Zahit Yeken, Vahdettin Ciftci

Abstract:

Turkey is considered a bridge between Europe, Asia, and Africa and possibly played an important role in the distribution of many crops including common bean. Hundreds of common bean landraces can be found in Turkey, particularly in farmers’ fields, and they consistently contribute to the overall production. To investigate the existing genetic diversity and hybridization events between the Andean and Mesoamerican gene pools in the Turkish common bean, 188 common bean accessions (182 landraces and 6 modern cultivars as controls) were collected from 19 different Turkish geographic regions. These accessions were characterized using phenotypic data (growth habit and seed weight), geographic provenance, 12557 high-quality whole-genome DArTseq markers, and 3767 novel DArTseq loci were also identified. The clustering algorithms resolved the Turkish common bean landrace germplasm into the two recognized gene pools, the Mesoamerican and Andean gene pools. Hybridization events were observed in both gene pools (14.36% of the accessions) but mostly in the Mesoamerican (7.97% of the accessions), and was low relative to previous European studies. The lower level of hybridization witnessed the existence of Turkish common bean germplasm in its original form as compared to Europe. Mesoamerican gene pool reflected a higher level of diversity, while the Andean gene pool was predominant (56.91% of the accessions), but genetically less diverse and phenotypically more pure, reflecting farmers greater preference for the Andean gene pool. We also found some genetically distinct landraces and overall, a meaningful level of genetic variability which can be used by the scientific community in breeding efforts to develop superior common bean strains.

Keywords: bean germplasm, DArTseq markers, genotyping by sequencing, Turkey, whole genome diversity

Procedia PDF Downloads 243
1409 Dwindling the Stability of DNA Sequence by Base Substitution at Intersection of COMT and MIR4761 Gene

Authors: Srishty Gulati, Anju Singh, Shrikant Kukreti

Abstract:

The manifestation of structural polymorphism in DNA depends on the sequence and surrounding environment. Ample of folded DNA structures have been found in the cellular system out of which DNA hairpins are very common, however, are indispensable due to their role in the replication initiation sites, recombination, transcription regulation, and protein recognition. We enumerate this approach in our study, where the two base substitutions and change in temperature embark destabilization of DNA structure and misbalance the equilibrium between two structures of a sequence present at the overlapping region of the human COMT gene and MIR4761 gene. COMT and MIR4761 gene encodes for catechol-O-methyltransferase (COMT) enzyme and microRNAs (miRNAs), respectively. Environmental changes and errors during cell division lead to genetic abnormalities. The COMT gene entailed in dopamine regulation fosters neurological diseases like Parkinson's disease, schizophrenia, velocardiofacial syndrome, etc. A 19-mer deoxyoligonucleotide sequence 5'-AGGACAAGGTGTGCATGCC-3' (COMT19) is located at exon-4 on chromosome 22 and band q11.2 at the intersection of COMT and MIR4761 gene. Bioinformatics studies suggest that this sequence is conserved in humans and few other organisms and is involved in recognition of transcription factors in the vicinity of 3'-end. Non-denaturating gel electrophoresis and CD spectroscopy of COMT sequences indicate the formation of hairpin type DNA structures. Temperature-dependent CD studies revealed an unusual shift in the slipped DNA-Hairpin DNA equilibrium with the change in temperature. Also, UV-thermal melting techniques suggest that the two base substitutions on the complementary strand of COMT19 did not affect the structure but reduces the stability of duplex. This study gives insight about the possibility of existing structurally polymorphic transient states within DNA segments present at the intersection of COMT and MIR4761 gene.

Keywords: base-substitution, catechol-o-methyltransferase (COMT), hairpin-DNA, structural polymorphism

Procedia PDF Downloads 122
1408 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 291
1407 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR

Authors: Hermalina Sinay, Estri L. Arumingtyas

Abstract:

The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.

Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku

Procedia PDF Downloads 299
1406 Insights into Archaeological Human Sample Microbiome Using 16S rRNA Gene Sequencing

Authors: Alisa Kazarina, Guntis Gerhards, Elina Petersone-Gordina, Ilva Pole, Viktorija Igumnova, Janis Kimsis, Valentina Capligina, Renate Ranka

Abstract:

Human body is inhabited by a vast number of microorganisms, collectively known as the human microbiome, and there is a tremendous interest in evolutionary changes in human microbial ecology, diversity and function. The field of paleomicrobiology, study of ancient human microbiome, is powered by modern techniques of Next Generation Sequencing (NGS), which allows extracting microbial genomic data directly from archaeological sample of interest. One of the major techniques is 16S rRNA gene sequencing, by which certain 16S rRNA gene hypervariable regions are being amplified and sequenced. However, some limitations of this method exist including the taxonomic precision and efficacy of different regions used. The aim of this study was to evaluate the phylogenetic sensitivity of different 16S rRNA gene hypervariable regions for microbiome studies in the archaeological samples. Towards this aim, archaeological bone samples and corresponding soil samples from each burial environment were collected in Medieval cemeteries in Latvia. The Ion 16S™ Metagenomics Kit targeting different 16S rRNA gene hypervariable regions was used for library construction (Ion Torrent technologies). Sequenced data were analysed by using appropriate bioinformatic techniques; alignment and taxonomic representation was done using Mothur program. Sequences of most abundant genus were further aligned to E. coli 16S rRNA gene reference sequence using MEGA7 in order to identify the hypervariable region of the segment of interest. Our results showed that different hypervariable regions had different discriminatory power depending on the groups of microbes, as well as the nature of samples. On the basis of our results, we suggest that wider range of primers used can provide more accurate recapitulation of microbial communities in archaeological samples. Acknowledgements. This work was supported by the ERAF grant Nr. 1.1.1.1/16/A/101.

Keywords: 16S rRNA gene, ancient human microbiome, archaeology, bioinformatics, genomics, microbiome, molecular biology, next-generation sequencing

Procedia PDF Downloads 190
1405 The Contribution of Genetic Polymorphisms of Tumor Necrosis Factor Alpha and Vascular Endothelial Growth Factor into the Unfavorable Clinical Course of Ulcerative Colitis

Authors: Y. I. Tretyakova, S. G. Shulkina, T. Y. Kravtsova, A. A. Antipova, N. Y. Kolomeets

Abstract:

The research aimed to assess the functional significance of tumor necrosis factor-alpha (TNF-α) gene polymorphism at the -308G/A (rs1800629) region and vascular endothelial growth factor A (VEGFA) gene polymorphism at the -634G/C (rs 2010963) region in the development of ulcerative colitis (UC), focusing on patients from the Perm region, Russia. We examined 70 UC patients and 50 healthy donors during the active phase of the disease. Our focus was on TNF-α and VEGF concentration in the blood serum, as well as TNF-α and VEGFA gene polymorphisms at the -308G/А and -634G/C regions, respectively. We found that TNF-α and VEGF levels were significantly higher in patients with severe UC and high endoscopic activity compared to those with milder forms of the disease and low endoscopic activity. These tests could serve as additional non-invasive markers for assessing mucosal damage in the large intestine of UC patients. The frequency of allele variations in the TNF-α gene -308G/A (rs1800629) revealed a significantly higher occurrence of the unfavorable homozygote AA in UC patients compared to donors. Additionally, the major allele G and the allele pair GG were more frequent in patients with mild to moderate disease and 1-2 degree of endoscopic activity than in those with severe UC and 3-4 degree of endoscopic activity (χ2=14.19; p=0.000). We also observed a mutant allele A and the unfavorable homozygote AA associated with severe progressive UC. The occurrence of the mutant allele increased the risk of severe UC by 5 times (OR 5.03; CI 12.07-12.21). We did not find any significant differences in the frequency of the CC homozygote (χ2=1.02; p=0.6; OR=1.32) and the mutant allele C of the VEGFA gene -634G/C (rs 2010963) (χ2=0.01; p=0.913; OR=0.97) between groups of UC patients and healthy individuals. However, we detected that the mutant allele C and the unfavorable homozygote CC of the VEGFA gene were associated with more severe endoscopic changes in the colonic mucosa of UC patients (χ2=25,76; р=0,000; OR=0,15). The presence of the mutant allele increased the risk of severe UC by 6 times (OR 6,78; CI 3,13–14,7). We found a direct correlation between TNF-α and VEGFA gene polymorphisms, increased production of the same factors, disease severity, and endoscopic activity (р=0.000). Therefore, the presence of the mutant allele A and homozygote AA of the TNF-α gene at the -308G/A region and the mutant allele C and homozygote CC of the VEGFA gene at the -634G/C region are associated with risks related to an unfavorable clinical course of UC, frequent recurrences, and rapid progression. These findings should be considered when making prognoses regarding the clinical course of the disease and selecting treatment strategies. The presence of the homozygote AA in the TNF-α gene (rs1800629) is considered a sign of genetic predisposition to UC.

Keywords: gene polymorphism, TNF-α, ulcerative colitis, VEGF

Procedia PDF Downloads 74
1404 Mutation Analysis of the ATP7B Gene in 43 Vietnamese Wilson’s Disease Patients

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le, Chi V. Phan

Abstract:

Wilson’s disease (WD) is an autosomal recessive disorder of the copper metabolism, which is caused by a mutation in the copper-transporting P-type ATPase (ATP7B). The mechanism of this disease is the failure of hepatic excretion of copper to bile, and leads to copper deposits in the liver and other organs. The ATP7B gene is located on the long arm of chromosome 13 (13q14.3). This study aimed to investigate the gene mutation in the Vietnamese patients with WD, and make a presymptomatic diagnosis for their familial members. Forty-three WD patients and their 65 siblings were identified as having ATP7B gene mutations. Genomic DNA was extracted from peripheral blood samples; 21 exons and exon-intron boundaries of the ATP7B gene were analyzed by direct sequencing. We recognized four mutations ([R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G) in the sum of 20 detectable mutations, accounting for 87.2% of the total. Mutation S105* was determined to have a high rate (32.6%) in this study. The hotspot regions of ATP7B were found at exons 2, 16, and 8, and intron 14, in 39.6 %, 11.6 %, 9.3%, and 7 % of patients, respectively. Among nine homozygote/compound heterozygote siblings of the patients with WD, three individuals were determined as asymptomatic by screening mutations of the probands. They would begin treatment after diagnosis. In conclusion, 20 different mutations were detected in 43 WD patients. Of this number, four novel mutations were explored, including [R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G. The mutation S105* is the most prevalent and has been considered as a biomarker that can be used in a rapid detection assay for diagnosis of WD patients. Exons 2, 8, and 16, and intron 14 should be screened initially for WD patients in Vietnam. Based on risk profile for WD, genetic testing for presymptomatic patients is also useful in diagnosis and treatment.

Keywords: ATP7B gene, mutation detection, presymptomatic diagnosis, Vietnamese Wilson’s disease

Procedia PDF Downloads 380
1403 PMEL Marker Identification of Dark and Light Feather Colours in Local Canary

Authors: Mudawamah Mudawamah, Muhammad Z. Fadli, Gatot Ciptadi, Aulanni’am

Abstract:

Canary breeders have spread throughout Indonesian regions for the low-middle society and become an income source for them. The interesting phenomenon of the canary market is the feather colours become one of determining factor for the price. The advantages of this research were contributed to the molecular database as a base of selection and mating for the Indonesia canary breeder. The research method was experiment with the genome obtained from canary blood isolation. The genome did the PCR amplification with PMEL marker followed by sequencing. Canaries were used 24 heads of light and dark colour feathers. Research data analyses used BioEdit and Network 4.6.0.0 software. The results showed that all samples were amplification with PMEL gene with 500 bp fragment length. In base sequence of 40 was found Cytosine(C) in the light colour canaries, while the dark colour canaries was obtained Thymine (T) in same base sequence. Sequence results had 286-415 bp fragment and 10 haplotypes. The conclusions were the PMEL gene (gene of white pigment) was likely to be used PMEL gene to detect molecular genetic variation of dark and light colour feather.

Keywords: canary, haplotype, PMEL, sequence

Procedia PDF Downloads 237
1402 Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts

Authors: Mengying Wang, Dongjing Liu, Holger Schwender, Ping Wang, Hongping Zhu, Tao Wu, Terri H Beaty

Abstract:

Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies.

Keywords: Gene-Gene Interaction, Maternal Smoking, Nicotine Dependence, Non-Syndromic Cleft Lip with or without Cleft Palate

Procedia PDF Downloads 337
1401 Identification and Characterization of 18S rRNA Gene of Demodex Canis From the Dog Population of Mizoram, India

Authors: Moneesh Thakur, Hridayesh Prasad, Nikitasha Bora, Parimal Roy Choudhary, A. K. Samanta, Sanjeev Kumar

Abstract:

Canine demodicosis is a common parasitic condition which involves dog skin. Demodicosis in dogs is due the prominent growth of Demodex. Out of various canine Demodex spp., Demodex canis is the most often involved species. Canine demodicosis can occur as either a localized or generalized form of demodicosis severely affect the dogs and in non-treated dogs may cause death. This study was planned with the aim to screen and characterize the 18S rRNA gene of isolated Demodex canis. A total of 1200 dogs were screened during this study period. The skin scrapings of all the suspected dogs were examined under a microscope at 100X magnification for the presence of Demodex canis. The skin scrapings positive for Demodex canis were examined using PCR for confirmation. A total of 35 dogs were confirmed a positive result for D. canis based on 18S rRNA gene amplification by PCR. Further, the 18S rRNA gene of isolated Demodex canis was cloned and sequenced for genome analysis. On the sequence analysis, it was found that isolated sequence (GenBank Accession No. MK177513) had close similarity (99.7%) to that of D. canis genotype of China (Accession No. MG372254).

Keywords: PCR, phylogenetic analysis, cloning and sequening, Demodex canis

Procedia PDF Downloads 93
1400 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition

Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh

Abstract:

The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.

Keywords: biofuel, gene, lipid, microalgae

Procedia PDF Downloads 307
1399 The Genetic Basis of the Lack of Impulse Control: What is Provided for the Criminal Law?

Authors: Amir Bastani

Abstract:

The result of the research in the field of human behavioural genetics demonstrates a genetic contribution of behavioural differences in aggression, violence, drug and substance abuse, antisocial personality disorder and other related traits. As the field of human behavioural genetics progresses and achieves credibility, the criminal accused continue to use its types of evidence into the criminal law. One of the most important genetic factors which controls certain neurotransmitters like dopamine and serotonin is the Monoamine Oxidase Acid A (MAOA) gene, known as the 'warrior gene'. The high-profile study by Caspi and colleagues in 2002 showed that the combination between one type of variation of the MAOA gene and childhood maltreatment noticeably predisposes a person to antisocial behaviour. Moreover, further scientific research shows that individuals with the MAOA gene have to some degree difficulties in controlling their impulses. Based on the evidence of MAOA, some criminal accused claimed difficulties in self-control. In the first case – the famous case of Mobley – the court rejected the MAOA evidence on the ground of the lack of scientific support. In contrast, in other cases after the Mobley trial, courts accepted the evidence of MAOA. In this paper, the issue of lack of impulse control produced by the MAOA gene and cases which relied on the MAOA evidence and successfully being accepted will be reviewed in detail. Finally, the anticipation of the paper for the future use of the MAOA evidence in criminal cases will be presented.

Keywords: genetic defence, criminal responsibility, MAOA, self-control

Procedia PDF Downloads 472
1398 Mutational and Evolutionary Analysis of Interleukin-2 Gene in Four Pakistani Goat Breeds

Authors: Tanveer Hussain, Misbah Hussain, Masroor Ellahi Babar, Muhammad Traiq Pervez, Fiaz Hussain, Sana Zahoor, Rashid Saif

Abstract:

Interleukin 2 (IL-2) is a cytokine which is produced by activated T cells, play important role in immune response against antigen. It act in both autocrine and paracrine manner. It can stimulate B cells and various other phagocytic cells like monocytes, lymphokine-activated killer cells and natural killer cells. Acting in autocrine fashion, IL-2 protein plays a crucial role in proliferation of T cells. IL-2 triggers the release of pro and anti- inflammatory cytokines by activating several pathways. In present study, exon 1 of IL-2 gene of four local Pakistani breeds (Dera Din Panah, Beetal, Nachi and Kamori) from two provinces was amplified by using reported Ovine IL-2 primers, yielding PCR product of 501 bp. The sequencing of all samples was done to identify the polymorphisms in amplified region of IL-2 gene. Analysis of sequencing data resulted in identification of one novel nucleotide substitution (T→A) in amplified non-coding region of IL-2 gene. Comparison of IL-2 gene sequence of all four breeds with other goat breeds showed high similarity in sequence. While phylogenetic analysis of our local breeds with other mammals showed that IL-2 is a variable gene which has undergone many substitutions. This high substitution rate can be due to the decreased or increased changed selective pressure. These rapid changes can also lead to the change in function of immune system. This pioneering study of Pakistani goat breeds urge for further studies on immune system of each targeted breed for fully understanding the functional role of IL-2 in goat immunity.

Keywords: interleukin 2, mutational analysis, phylogeny, goat breeds, Pakistan

Procedia PDF Downloads 611
1397 Genetic Variation of Lactoferrin Gene and Its Association with Productive Traits in Egyptian Goats

Authors: Othman E. Othman, Hassan R. Darwish, Amira M. Nowier

Abstract:

Lactoferrin (LF) is a multifunctional protein involved in economically production traits like milk protein composition and skeletal structure in small ruminants including sheep and goat. So, LF gene - with its genetic polymorphisms associated with production traits - is considered a candidate genetic marker used in marker-assisted selection in goats. This study aimed to identify the different alleles and genotypes of this gene in three Egyptian goat breeds using PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing. Genomic DNA was extracted from 120 animals belonging to Barki, Zaraibi, and Damascus goat breeds. Using specific primers, PCR amplified 247-bp fragments from exon 2 of LF goat gene. The PCR products were subjected to Single-Strand Conformation Polymorphism (SSCP) technique. The results showed the presence of two genotypes GG and AG in the tested animals. The frequencies of both genotypes varied among the three tested breeds with the highest frequencies of GG genotype in all tested goat breeds. The sequence analysis of PCR products representing these two detected genotypes declared the presence of an SNP (single nucleotide polymorphisms) substitution (G/A) among G and A alleles of this gene. The association between different LF genotypes and milk composition as well as body measurement was estimated. The comparison showed that the animals possess AG genotypes are superior over those with GG genotypes for different parameters of milk protein compositions and skeletal structures. This finding declared that allele A of LF gene is considered the promising marker for the productive traits in goat. In conclusion, the Egyptian goat breeds will be needed to enhance their milk protein composition and growth trait parameters through the increasing of allele A frequency in their herds depending on the superior production traits of this allele in goats.

Keywords: lLactoferrin gene, PCR-SSCP, SNPs, Egyptian goat

Procedia PDF Downloads 155
1396 The Pharmacogenetics of Type 1 Cannabinoid Receptor (CB1) Gene Associated with Adverse Drug Reactions in Thai Patients

Authors: Kittitara Chunlakittiphan, Patompong Satapornpong

Abstract:

Introduction: The variation of genetics affects how our body responds to pharmaceuticals elucidates the correlation between long-term use of medical cannabis and adverse drug reactions (ADRs). Medical cannabis is regarded as the treatment for chronic pain, cancer pain, acute pain, psychological disorders, multiple sclerosis and migraine management. However, previous studies have shown that delta-9-Tetrahydrocannabinol (THC), an ingredient found in cannabis, was the cause of ADRs in CB1 receptors found in humans. Previous research suggests that distributions of the cannabinoid type 1 (CB1) receptor gene and pharmacogenetic markers, which vary amongst different populations, might affect incidences of ADRs. Although there is an evident need to investigate the level of the CB1 receptor gene (rs806365), studies on the distribution of CB1-pharmacogenetics markers in Thai patients are limited. Objective: Therefore, the aim of this study is to investigate the distribution of the rs806365 polymorphism in Thai patients who have been treated with medical cannabis. Materials and Methods: We enrolled 31 Thai patients with THC-induced ADRs and 34 THC-tolerant controls to take part in this study. All patients with THC-induced ADRs were accessed through a review of medical records by physicians. EDTA blood of 3ml was collected to obtain the CNR1 gene (rs806365) and genotyping of this gene was conducted using the real-time PCR ViiA7 (ABI, Foster City, CA, USA) following the manufacturer’s instruction. Results: The sample consisted of 65 patients (40/61.54%) were females and (25/38.46%) were males, with an age range of 19-87 years, who have been treated with medical cannabis. In this study, the most common THC-induced ADRs were dry mouth and/or dry throat, tachycardia, nausea, and arrhythmia. Across the whole sample, we found that 52.31% of Thai patients carried a heterozygous variant (rs806365, CT allele). Moreover, the number of rs806365 (CC, homozygous variant) carriers totaled seventeen people (26.15%) amongst the subjects of Thai patients treated with medical cannabis. Furthermore, 17 out of 22 patients (77.27%) who experienced severe ADRs: Tachycardia and/or arrhythmia, carried an abnormal rs806365 gene (CT and CC alleles). Conclusions: The results propose that the rs806365 gene is widely distributed amongst the Thai population and there is a link between this gene and vulnerability to developing THC-induced ADRs after being treated with medical cannabis. Therefore, it is necessary to screen for the rs806365 gene before using medical cannabis to treat a patient.

Keywords: rs806365, THC-induced adverse drug reactions, CB1 receptor, Thai population

Procedia PDF Downloads 101
1395 Lack of Association between IL-10 Promoter Gene Polymorphisms and Tuberculosis Susceptibility in Thai Population

Authors: Manaphol Kulpraneet, Anirut Limtrakul, Surangrat Srisurapanon, Piyatida Tangteerawatana

Abstract:

Tuberculosis (TB) remains a global health care disease world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug resistant forms of Mycobacterium tuberculosis and by lack of sensitive and rapid diagnostics. Cytokines play a major role in defense against M. tuberculosis infection. Polymorphisms in the genes encoding various cytokines have been associated with tuberculosis susceptibility. Polymorphisms of the regulatory cytokine gene, the interleukin (IL)-10 is associated with the risk of tuberculosis (TB) in different populations. However, IL-10 gene polymorphism and susceptibility to TB in Thai is still unknown. The purpose of this study was to evaluate whether the common IL-10 promoter gene polymorphisms are associated with TB in Thai population. Forty eight patients with newly diagnosed pulmonary tuberculosis were studied. DNA samples were extracted from leukocytes and used to investigate -1087A/G, -819C/T, -252C/A (rs1800896, rs1800871, rs1800872) in IL-10 gene using restriction fragment length polymorphism (PCR-RFLP) methods. In this study, the genotype and allele frequencies of IL-10-1087A/G, -819C/T, -252C/A polymorphism did not significantly different between TB patients and healthy controls ((genotype: p=0.38, p=0.92, p=1; allele: p=0.57, p=0.77, p=0.89, respectively). The lack of association between common IL-10 promoter polymorphisms and TB susceptibility in this study may provide clue for better understanding of IL-10-1087A/G, -819C/T, -252C/A polymorphism and TB susceptibility in Thai population, which might facilitate the rationale design of vaccines. However, further studies in large scales population are required for confirmation.

Keywords: IL-10, cytokines, single nucleotide polymorphism (SNP), tuberculosis

Procedia PDF Downloads 333
1394 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma

Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar

Abstract:

Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.

Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene

Procedia PDF Downloads 184
1393 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA

Procedia PDF Downloads 526
1392 Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells

Authors: Hajar Hosseini Khorami

Abstract:

Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins.

Keywords: cationic porphyrins, gene delivery, non-viral vectors, transfection reagents

Procedia PDF Downloads 200
1391 Utilizing the RhlR/RhlI Quorum Sensing System to Express the ß-Galactosidase Reporter Gene by Using the N-Butanoyl Homoserine Lactone and N-Hexanoyl Homoserine Lactone

Authors: Ngoc Tu Truong, Nuong T. Bui, Ben Rao, Ya L. Shen

Abstract:

Quorum sensing is a phenomenon present in many gram-negative bacteria that allows bacterial communication and controlled expression of a large suite of genes through quorum sensing signals - N-acyl homoserine lactones (AHLs). In order to investigate the ability of the rhlR/rhlI quorum sensing system in Pseudomonas aeruginosa to express the ß-Galactosidase reporter gene, an engineered E. coli strain EpHL02, was genetically engineered. This engineered E. coli strain EpHL02 responded to the presence of the N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone to express the ß-Galactosidase reporter gene at a concentration limit of 5x10⁻⁸ M. This was also found to be comparable to AHLs extraction from Serratia marcescens H31. Moreover, we examined this ability of this engineered E. coli strain for respond of AHLs from extractions of Pseudomonas aeruginosa ATCC9027. The results demonstrated that the rhlR/rhlI quorum sensing system can express the ß-Galactosidase reporter gene by using the N-butanoyl homoserine lactone, N-hexanoyl homoserine lactone and AHLs from extractions of Serratia marcescens H31 and Pseudomonas aeruginosa ATCC9027 in the engineered E. coli strain EpHL02.

Keywords: N-butanoyl homoserine lactone, C4-HSL, N-hexanoyl homoserine lactone, C6-HSL, Pseudomonas aeruginosa, quorum sensing, Serratia marcescens, ß-galactosidase reporter gene

Procedia PDF Downloads 305
1390 Establishing a Genetic Link between Fat Mass and Obesity Associated and Vitamin D Receptor Gene Polymorphisms and Obesity in the Emirati Population

Authors: Saad Mahmud Khan, Sarah El Hajj Chehadeh, Mehera Abdulrahman, Wael Osman, Habiba Al Safar

Abstract:

Obesity is a non-communicable disease that is widely prevalent with approximately 600 million people classified as obese worldwide. Its etiology is multifactorial and involves a complex interplay between genes and the environment. Over the past few decades, obesity rates among the Emirati population have been increasing. The aim of this study was to investigate the association of candidate gene single nucleotide polymorphisms (SNPs), namely the fat mass and obesity associated (FTO) gene SNP rs9939609 and Vitamin D Receptor (VDR) gene SNP rs1544410, with obesity in the UAE population. Methods: This is a case-control study in which 414 individuals were enrolled during their routine visit to endocrinology clinics in Abu Dhabi, United Arab Emirates between the period of June 2012 and December 2013. Several biochemical tests and clinical assessments along with a lifestyle questionnaire for each participant were completed at the clinic. Genomic DNA was extracted from saliva samples of 201 obese, 114 overweight and 99 normal subjects. Genotyping for the variants was performed using TaqMan assay. Results: The mean Body Mass Index (BMI) ± SD for the obese, overweight, and normal subjects was 35.76 ± 4.54, 27.53 ± 1.45 and 22.69 ± 1.84 kg/m2, respectively. Increasing BMI values were associated with an increase in values for systolic blood pressure, diastolic blood pressure, HbA1c, and triglycerides. The SNP rs9939609 in the FTO gene was found to be significantly associated with the BMI (p=0.028), with the minor allele A having a clear additive effect on BMI values. No significant association was detected between BMI and rs1544410 of the VDR gene. Conclusions: Our study findings indicate that the minor allele A of the rs9939609 has a significant association with increasing BMI values. In addition, our findings support the fact that increasing BMI is associated with increasing risks of other comorbidities such as higher blood pressure, poorer glycemic control and higher triglycerides.

Keywords: body mass index, FTO gene, obesity, rs9939609, United Arab Emirates

Procedia PDF Downloads 222
1389 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 639