Search results for: Poisson inverse Gaussian distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5902

Search results for: Poisson inverse Gaussian distribution

5812 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: conduction, inverse problems, conjugated gradient method, laser

Procedia PDF Downloads 366
5811 Velocity Distribution in Density Currents Flowing over Rough Beds

Authors: Reza Nasrollahpour, Mohamad Hidayat Bin Jamal, Zulhilmi Bin Ismail

Abstract:

Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region.

Keywords: density currents, velocity profiles, Acoustic Doppler Velocimeter, bed roughness

Procedia PDF Downloads 184
5810 Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes

Authors: Septimia Sarbu

Abstract:

The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes.

Keywords: generalized entropies, Sharma-Mittal entropy rate, Gaussian processes, eigenvalues of the covariance matrix, squeeze theorem

Procedia PDF Downloads 517
5809 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness

Procedia PDF Downloads 332
5808 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: kinematics, degree of freedom, optimization, robot manipulator

Procedia PDF Downloads 462
5807 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 320
5806 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 379
5805 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries

Authors: Tatheer Zahra

Abstract:

Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.

Keywords: auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics

Procedia PDF Downloads 121
5804 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model

Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele

Abstract:

The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.

Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.

Procedia PDF Downloads 63
5803 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference

Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade

Abstract:

In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.

Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory

Procedia PDF Downloads 86
5802 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 175
5801 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma

Abstract:

Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 637
5800 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method

Procedia PDF Downloads 301
5799 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: wind power, Gaussien process, modelling, forecasting

Procedia PDF Downloads 415
5798 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 308
5797 Infinite Impulse Response Digital Filters Design

Authors: Phuoc Si Nguyen

Abstract:

Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain.

Keywords: bilinear z-transformation, frequency transformation, inverse bilinear z-transformation, IIR digital filters

Procedia PDF Downloads 419
5796 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System

Authors: Abbas Hani, Maryam Jassasizadeh

Abstract:

The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.

Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark

Procedia PDF Downloads 165
5795 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad Daba, Jean-Pierre Dubois

Abstract:

Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process

Procedia PDF Downloads 446
5794 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 113
5793 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach

Authors: Mukesh Kumar Shah, Tushar Gupta

Abstract:

An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.

Keywords: economic dispatch, gaussian selection operator, prohibited operating zones, ramp rate limits

Procedia PDF Downloads 127
5792 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 452
5791 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 420
5790 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 354
5789 Tests for Zero Inflation in Count Data with Measurement Error in Covariates

Authors: Man-Yu Wong, Siyu Zhou, Zhiqiang Cao

Abstract:

In quality of life, health service utilization is an important determinant of medical resource expenditures on Colorectal cancer (CRC) care, a better understanding of the increased utilization of health services is essential for optimizing the allocation of healthcare resources to services and thus for enhancing the service quality, especially for high expenditure on CRC care like Hong Kong region. In assessing the association between the health-related quality of life (HRQOL) and health service utilization in patients with colorectal neoplasm, count data models can be used, which account for over dispersion or extra zero counts. In our data, the HRQOL evaluation is a self-reported measure obtained from a questionnaire completed by the patients, misreports and variations in the data are inevitable. Besides, there are more zero counts from the observed number of clinical consultations (observed frequency of zero counts = 206) than those from a Poisson distribution with mean equal to 1.33 (expected frequency of zero counts = 156). This suggests that excess of zero counts may exist. Therefore, we study tests for detecting zero-inflation in models with measurement error in covariates. Method: Under classical measurement error model, the approximate likelihood function for zero-inflation Poisson regression model can be obtained, then Approximate Maximum Likelihood Estimation(AMLE) can be derived accordingly, which is consistent and asymptotically normally distributed. By calculating score function and Fisher information based on AMLE, a score test is proposed to detect zero-inflation effect in ZIP model with measurement error. The proposed test follows asymptotically standard normal distribution under H0, and it is consistent with the test proposed for zero-inflation effect when there is no measurement error. Results: Simulation results show that empirical power of our proposed test is the highest among existing tests for zero-inflation in ZIP model with measurement error. In real data analysis, with or without considering measurement error in covariates, existing tests, and our proposed test all imply H0 should be rejected with P-value less than 0.001, i.e., zero-inflation effect is very significant, ZIP model is superior to Poisson model for analyzing this data. However, if measurement error in covariates is not considered, only one covariate is significant; if measurement error in covariates is considered, only another covariate is significant. Moreover, the direction of coefficient estimations for these two covariates is different in ZIP regression model with or without considering measurement error. Conclusion: In our study, compared to Poisson model, ZIP model should be chosen when assessing the association between condition-specific HRQOL and health service utilization in patients with colorectal neoplasm. and models taking measurement error into account will result in statistically more reliable and precise information.

Keywords: count data, measurement error, score test, zero inflation

Procedia PDF Downloads 286
5788 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 122
5787 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia

Authors: Ammar Juma Abdlmutalib, Osman Abdullatif

Abstract:

Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.

Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis

Procedia PDF Downloads 396
5786 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 167
5785 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 56
5784 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia

Authors: Mokhtar Kouki Inès Rekik

Abstract:

This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after the 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, Negative binomial, Zero inflated Poisson, Poisson hurdle, Negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.

Keywords: bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days

Procedia PDF Downloads 256
5783 Dynamic Distribution Calibration for Improved Few-Shot Image Classification

Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran

Abstract:

Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.

Keywords: deep learning, computer vision, image classification, few-shot learning, threshold

Procedia PDF Downloads 64