Search results for: Marc Verboord
15 Associations Between Pornography Use Motivations and Sexual Satisfaction in Gender Diverse and Cisgender Individuals in the 43-Country International Sex Survey
Authors: Aurélie Michaud, Émilie Gaudet, Mónika Koós, Léna Nagy, Zsolt Demetrovics, Shane W. Kraus, Marc N. Potenza, Beáta Bőthe
Abstract:
Pornography use is prevalent among adults worldwide. Prior studies have assessed the associations between pornography use frequency and sexual satisfaction, in cisgender and heterosexual individuals, with mixed results. However, measuring pornography use solely by pornography use frequency is problematic, as it can lead to disregarding important contextual factors that may be related to pornography use’s potential effects. Pornography use motivations (PUMs) represent key predictors of sexual behaviors. Yet, their associations with different indicators of sexual wellbeing have yet to be extensively studied. This cross-cultural study examined the links between the eight PUMs most often reported in the general population (i.e. sexual pleasure, sexual curiosity, emotional distraction or suppression, fantasy, stress reduction, boredom avoidance, lack of sexual satisfaction, and self-exploration) and sexual satisfaction in gender diverse and cisgender individuals. Given the lack of scientific data on associations between individuals’ PUMs and sexual satisfaction, these links were examined in an exploratory manner. A total of 43 countries from five continents were included in the International Sex Survey (ISS). A secure online platform was used to collect self-report, anonymous data from 82,243 participants (39.6% men, 57% women, 3.4% gender diverse individuals; M = 32.4 years, SD = 12.5). Gender-based differences in levels of sexual pleasure, sexual curiosity, emotional distraction, fantasy, stress reduction, boredom avoidance, lack of sexual satisfaction, and self-exploration PUMs were examined using one-way ANOVAs. Then, for each gender group, the associations between each PUM and sexual satisfaction were examined using multiple linear regression, controlling for frequency of masturbation. One-way ANOVAs indicated significant differences between men, women, and gender diverse individuals on all PUMs. For sexual pleasure, sexual curiosity, fantasy, boredom avoidance, lack of sexual satisfaction, emotional distraction, and stress reduction PUMs, men showed the highest scores, followed by gender-diverse individuals, and women. However, for self-exploration, gender-diverse individuals had higher average scores than men. For all PUMs, women’s average scores were the lowest. After controlling for frequency of masturbation, for all genders, sexual pleasure, sexual curiosity and boredom avoidance were significant positive predictors of sexual satisfaction, while lack of sexual satisfaction PUM was a significant negative predictor. Fantasy, stress reduction and self-exploration PUMs were positive significant predictors of sexual satisfaction, and fantasy was a negative significant predictor, but only for women. Findings highlight important gender differences in regards to the main motivations underlying pornography use and their relations to sexual satisfaction. While men and gender diverse individuals show similar motivation profiles, woman report a particularly unique experience, with fantasy, stress reduction and self-exploration being associated to their sexual satisfaction. This work outlines the importance of considering the role of pornography use motivations when studying the links between pornography viewing and sexual well-being, and may provide basis for gender-based considerations when working with individuals seeking help for their pornography use or sexual satisfaction.Keywords: pornography, sexual satifsaction, cross-cultural, gender diversity
Procedia PDF Downloads 10714 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 8313 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation
Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent
Abstract:
Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene
Procedia PDF Downloads 20812 Augmented Reality to Support the Design of Innovative Agroforestry Systems
Authors: Laetitia Lemiere, Marie Gosme, Gerard Subsol, Marc Jaeger
Abstract:
Agroforestry is recognized as a way of developing sustainable and resilient agriculture that can fight against climate change. However, the number of species combinations, spatial configurations, and management options for trees and crops is vast. These choices must be adapted to the pedoclimatic and socio-economic contexts and to the objectives of the farmer, who therefore needs support in designing his system. Participative design workshops are a good way to integrate the knowledge of several experts in order to design such complex systems. The design of agroforestry systems should take into account both spatial aspects (e.g., spacing of trees within the lines and between lines, tree line orientation, tree-crop distance, species spatial patterns) and temporal aspects (e.g., crop rotations, tree thinning and pruning, tree planting in the case of successional agroforestry). Furthermore, the interactions between trees and crops evolve as the trees grow. However, agroforestry design workshops generally emphasize the spatial aspect only through the use of static tokens to represent the different species when designing the spatial configuration of the system. Augmented reality (AR) may overcome this limitation, allowing to visualize dynamic representations of trees and crops, and also their interactions, while at the same time retaining the possibility to physically interact with the system being designed (i.e., move trees, add or remove species, etc.). We propose an ergonomic digital solution capable of assisting a group of agroforestry experts to design an agroforestry system and to represent it. We investigated the use of web-based marker-based AR that does not require specific hardware and does not require specific installation so that all users could use their own smartphones right out of the pocket. We developed a prototype mobilizing the AR.js, ArToolKit.js, and Three.js open source libraries. In our implementation, we gradually build a virtual agroforestry system pattern scene from the users' interactions. A specific set of markers initialize the scene properties, and the various plant species are added and located during the workshop design session. The full virtual scene, including the trees positions with their neighborhood, are saved for further uses, such as virtual, augmented instantiation in the farmer fields. The number of tree species available in the application is gradually increasing; we mobilize 3D digital models for walnut, poplar, wild cherry, and other popular species used in agroforestry systems. The prototype allows shadow computations and the representation of trees at various growth stages, as well as different tree generations, and is thus able to visualize the dynamics of the system over time. Future work will focus on i) the design of complex patterns mobilizing several tree/shrub organizations, not restricted to lines; ii) the design of interfaces related to cultural practices, such as clearing or pruning; iii) the representation of tree-crop interactions. Beside tree shade (light competition), our objective is to represent also below-ground competitions (water, nitrogen) or other variables of interest for the design of agroforestry systems (e.g., predicted crop yield).Keywords: agroforestry system design, augmented reality, marker-based AR, participative design, web-based AR
Procedia PDF Downloads 17811 Inferring Influenza Epidemics in the Presence of Stratified Immunity
Authors: Hsiang-Yu Yuan, Marc Baguelin, Kin O. Kwok, Nimalan Arinaminpathy, Edwin Leeuwen, Steven Riley
Abstract:
Traditional syndromic surveillance for influenza has substantial public health value in characterizing epidemics. Because the relationship between syndromic incidence and the true infection events can vary from one population to another and from one year to another, recent studies rely on combining serological test results with syndromic data from traditional surveillance into epidemic models to make inference on epidemiological processes of influenza. However, despite the widespread availability of serological data, epidemic models have thus far not explicitly represented antibody titre levels and their correspondence with immunity. Most studies use dichotomized data with a threshold (Typically, a titre of 1:40 was used) to define individuals as likely recently infected and likely immune and further estimate the cumulative incidence. Underestimation of Influenza attack rate could be resulted from the dichotomized data. In order to improve the use of serosurveillance data, here, a refinement of the concept of the stratified immunity within an epidemic model for influenza transmission was proposed, such that all individual antibody titre levels were enumerated explicitly and mapped onto a variable scale of susceptibility in different age groups. Haemagglutination inhibition titres from 523 individuals and 465 individuals during pre- and post-pandemic phase of the 2009 pandemic in Hong Kong were collected. The model was fitted to serological data in age-structured population using Bayesian framework and was able to reproduce key features of the epidemics. The effects of age-specific antibody boosting and protection were explored in greater detail. RB was defined to be the effective reproductive number in the presence of stratified immunity and its temporal dynamics was compared to the traditional epidemic model using use dichotomized seropositivity data. Deviance Information Criterion (DIC) was used to measure the fitness of the model to serological data with different mechanisms of the serological response. The results demonstrated that the differential antibody response with age was present (ΔDIC = -7.0). The age-specific mixing patterns with children specific transmissibility, rather than pre-existing immunity, was most likely to explain the high serological attack rates in children and low serological attack rates in elderly (ΔDIC = -38.5). Our results suggested that the disease dynamics and herd immunity of a population could be described more accurately for influenza when the distribution of immunity was explicitly represented, rather than relying only on the dichotomous states 'susceptible' and 'immune' defined by the threshold titre (1:40) (ΔDIC = -11.5). During the outbreak, RB declined slowly from 1.22[1.16-1.28] in the first four months after 1st May. RB dropped rapidly below to 1 during September and October, which was consistent to the observed epidemic peak time in the late September. One of the most important challenges for infectious disease control is to monitor disease transmissibility in real time with statistics such as the effective reproduction number. Once early estimates of antibody boosting and protection are obtained, disease dynamics can be reconstructed, which are valuable for infectious disease prevention and control.Keywords: effective reproductive number, epidemic model, influenza epidemic dynamics, stratified immunity
Procedia PDF Downloads 26110 Comparison of Bioelectric and Biomechanical Electromyography Normalization Techniques in Disparate Populations
Authors: Drew Commandeur, Ryan Brodie, Sandra Hundza, Marc Klimstra
Abstract:
The amplitude of raw electromyography (EMG) is affected by recording conditions and often requires normalization to make meaningful comparisons. Bioelectric methods normalize with an EMG signal recorded during a standardized task or from the experimental protocol itself, while biomechanical methods often involve measurements with an additional sensor such as a force transducer. Common bioelectric normalization techniques for treadmill walking include maximum voluntary isometric contraction (MVIC), dynamic EMG peak (EMGPeak) or dynamic EMG mean (EMGMean). There are several concerns with using MVICs to normalize EMG, including poor reliability and potential discomfort. A limitation of bioelectric normalization techniques is that they could result in a misrepresentation of the absolute magnitude of force generated by the muscle and impact the interpretation of EMG between functionally disparate groups. Additionally, methods that normalize to EMG recorded during the task may eliminate some real inter-individual variability due to biological variation. This study compared biomechanical and bioelectric EMG normalization techniques during treadmill walking to assess the impact of the normalization method on the functional interpretation of EMG data. For the biomechanical method, we normalized EMG to a target torque (EMGTS) and the bioelectric methods used were normalization to the mean and peak of the signal during the walking task (EMGMean and EMGPeak). The effect of normalization on muscle activation pattern, EMG amplitude, and inter-individual variability were compared between disparate cohorts of OLD (76.6 yrs N=11) and YOUNG (26.6 yrs N=11) adults. Participants walked on a treadmill at a self-selected pace while EMG was recorded from the right lower limb. EMG data from the soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), and biceps femoris (BF) were phase averaged into 16 bins (phases) representing the gait cycle with bins 1-10 associated with right stance and bins 11-16 with right swing. Pearson’s correlations showed that activation patterns across the gait cycle were similar between all methods, ranging from r =0.86 to r=1.00 with p<0.05. This indicates that each method can characterize the muscle activation pattern during walking. Repeated measures ANOVA showed a main effect for age in MG for EMGPeak but no other main effects were observed. Interactions between age*phase of EMG amplitude between YOUNG and OLD with each method resulted in different statistical interpretation between methods. EMGTS normalization characterized the fewest differences (four phases across all 5 muscles) while EMGMean (11 phases) and EMGPeak (19 phases) showed considerably more differences between cohorts. The second notable finding was that coefficient of variation, the representation of inter-individual variability, was greatest for EMGTS and lowest for EMGMean while EMGPeak was slightly higher than EMGMean for all muscles. This finding supports our expectation that EMGTS normalization would retain inter-individual variability which may be desirable, however, it also suggests that even when large differences are expected, a larger sample size may be required to observe the differences. Our findings clearly indicate that interpretation of EMG is highly dependent on the normalization method used, and it is essential to consider the strengths and limitations of each method when drawing conclusions.Keywords: electromyography, EMG normalization, functional EMG, older adults
Procedia PDF Downloads 939 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 1198 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies
Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon
Abstract:
In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learningKeywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps
Procedia PDF Downloads 1287 The Effects of Labeling Cues on Sensory and Affective Responses of Consumers to Categories of Functional Food Carriers: A Mixed Factorial ANOVA Design
Authors: Hedia El Ourabi, Marc Alexandre Tomiuk, Ahmed Khalil Ben Ayed
Abstract:
The aim of this study is to investigate the effects of the labeling cues traceability (T), health claim (HC), and verification of health claim (VHC) on consumer affective response and sensory appeal toward a wide array of functional food carriers (FFC). Predominantly, research in the food area has tended to examine the effects of these information cues independently on cognitive responses to food product offerings. Investigations and findings of potential interaction effects among these factors on effective response and sensory appeal are therefore scant. Moreover, previous studies have typically emphasized single or limited sets of functional food products and categories. In turn, this study considers five food product categories enriched with omega-3 fatty acids, namely: meat products, eggs, cereal products, dairy products and processed fruits and vegetables. It is, therefore, exhaustive in scope rather than exclusive. An investigation of the potential simultaneous effects of these information cues on the affective responses and sensory appeal of consumers should give rise to important insights to both functional food manufacturers and policymakers. A mixed (2 x 3) x (2 x 5) between-within subjects factorial ANOVA design was implemented in this study. T (two levels: completely traceable or non-traceable) and HC (three levels: functional health claim, or disease risk reduction health claim, or disease prevention health claim) were treated as between-subjects factors whereas VHC (two levels: by a government agency and by a non-government agency) and FFC (five food categories) were modeled as within-subjects factors. Subjects were randomly assigned to one of the six between-subjects conditions. A total of 463 questionnaires were obtained from a convenience sample of undergraduate students at various universities in the Montreal and Ottawa areas (in Canada). Consumer affective response and sensory appeal were respectively measured via the following statements assessed on seven-point semantic differential scales: ‘Your evaluation of [food product category] enriched with omega-3 fatty acids is Unlikeable (1) / Likeable (7)’ and ‘Your evaluation of [food product category] enriched with omega-3 fatty acids is Unappetizing (1) / Appetizing (7).’ Results revealed a significant interaction effect between HC and VHC on consumer affective response as well as on sensory appeal toward foods enriched with omega-3 fatty acids. On the other hand, the three-way interaction effect between T, HC, and VHC on either of the two dependent variables was not significant. However, the triple interaction effect among T, VHC, and FFC was significant on consumer effective response and the interaction effect among T, HC, and FFC was significant on consumer sensory appeal. Findings of this study should serve as impetus for functional food manufacturers to closely cooperate with policymakers in order to improve on and legitimize the use of health claims in their marketing efforts through credible verification practices and protocols put in place by trusted government agencies. Finally, both functional food manufacturers and retailers may benefit from the socially-responsible image which is conveyed by product offerings whose ingredients remain traceable from farm to kitchen table.Keywords: functional foods, labeling cues, effective appeal, sensory appeal
Procedia PDF Downloads 1666 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 3385 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules
Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel
Abstract:
The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling
Procedia PDF Downloads 1334 Effects of Irrigation Applications during Post-Anthesis Period on Flower Development and Pyrethrin Accumulation in Pyrethrum
Authors: Dilnee D. Suraweera, Tim Groom, Brian Chung, Brendan Bond, Andrew Schipp, Marc E. Nicolas
Abstract:
Pyrethrum (Tanacetum cinerariifolium) is a perennial plant belongs to family Asteraceae. This is cultivated commercially for extraction of natural insecticide pyrethrins, which accumulates in their flower head achenes. Approximately 94% of the pyrethrins are produced within secretory ducts and trichomes of achenes of the mature pyrethrum flower. This is the most widely used botanical insecticide in the world and Australia is the current largest pyrethrum producer in the world. Rainfall in pyrethrum growing regions in Australia during pyrethrum flowering period, in late spring and early summer is significantly less. Due to lack of adequate soil moisture and under elevated temperature conditions during post-anthesis period, resulting in yield reductions. Therefore, understanding of yield responses of pyrethrum to irrigation is important for Pyrethrum as a commercial crop. Irrigation management has been identified as a key area of pyrethrum crop management strategies that could be manipulated to increase yield. Pyrethrum is a comparatively drought tolerant plant and it has some ability to survive in dry conditions due to deep rooting. But in dry areas and in dry seasons, the crop cannot reach to its full yield potential without adequate soil moisture. Therefore, irrigation is essential during the flowering period prevent crop water stress and maximise yield. Irrigation during the water deficit period results in an overall increased rate of water uptake and growth by the plant which is essential to achieve the maximum yield benefits from commercial crops. The effects of irrigation treatments applied at post-anthesis period on pyrethrum yield responses were studied in two irrigation methods. This was conducted in a first harvest commercial pyrethrum field in Waubra, Victoria, during 2012/2013 season. Drip irrigation and overhead sprinkler irrigation treatments applied during whole flowering period were compared with ‘rainfed’ treatment in relation to flower yield and pyrethrin yield responses. The results of this experiment showed that the application of 180mm of irrigation throughout the post-anthesis period, from early flowering stages to physiological maturity under drip irrigation treatment increased pyrethrin concentration by 32%, which combined with the 95 % increase in the flower yield to give a total pyrethrin yield increase of 157%, compared to the ‘rainfed’ treatment. In contrast to that overhead sprinkler irrigation treatment increased pyrethrin concentration by 19%, which combined with the 60 % increase in the flower yield to give a total pyrethrin yield increase of 91%, compared to the ‘rainfed’ treatment. Irrigation treatments applied throughout the post-anthesis period significantly increased flower yield as a result of enhancement of number of flowers and flower size. Irrigation provides adequate soil moisture for flower development in pyrethrum which slows the rate of flower development and increases the length of the flowering period, resulting in a delayed crop harvest (11 days) compared to the ‘rainfed’ treatment. Overall, irrigation has a major impact on pyrethrin accumulation which increases the rate and duration of pyrethrin accumulation resulting in higher pyrethrin yield per flower at physiological maturity. The findings of this study will be important for future yield predictions and to develop advanced agronomic strategies to maximise pyrethrin yield in pyrethrum.Keywords: achene, drip irrigation, overhead irrigation, pyrethrin
Procedia PDF Downloads 4103 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought
Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan
Abstract:
Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin
Procedia PDF Downloads 632 Effects of School Culture and Curriculum on Gifted Adolescent Moral, Social, and Emotional Development: A Longitudinal Study of Urban Charter Gifted and Talented Programs
Authors: Rebekah Granger Ellis, Pat J. Austin, Marc P. Bonis, Richard B. Speaker, Jr.
Abstract:
Using two psychometric instruments, this study examined social and emotional intelligence and moral judgment levels of more than 300 gifted and talented high school students enrolled in arts-integrated, academic acceleration, and creative arts charter schools in an ethnically diverse large city in the southeastern United States. Gifted and talented individuals possess distinguishable characteristics; these frequently appear as strengths, but often serious problems accompany them. Although many gifted adolescents thrive in their environments, some struggle in their school and community due to emotional intensity, motivation and achievement issues, lack of peers and isolation, identification problems, sensitivity to expectations and feelings, perfectionism, and other difficulties. These gifted students endure and survive in school rather than flourish. Gifted adolescents face special intrapersonal, interpersonal, and environmental problems. Furthermore, they experience greater levels of stress, disaffection, and isolation than non-gifted individuals due to their advanced cognitive abilities. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of these adolescents. Numerous studies have researched moral, social, and emotional development in the areas of cognitive-developmental, psychoanalytic, and behavioral learning; however, in almost all cases, these three facets have been studied separately leading to many divergent theories. Additionally, various frameworks and models purporting to encourage the different socio-affective branches of development have been debated in curriculum theory, yet research is inconclusive on the effectiveness of these programs. Most often studied is the socio-affective domain, which includes development and regulation of emotions; empathy development; interpersonal relations and social behaviors; personal and gender identity construction; and moral development, thinking, and judgment. Examining development in these domains can provide insight into why some gifted and talented adolescents are not always successful in adulthood despite advanced IQ scores. Particularly whether emotional, social and moral capabilities of gifted and talented individuals are as advanced as their intellectual abilities and how these are related to each other. This mixed methods longitudinal study examined students in urban gifted and talented charter schools for (1) socio-affective development levels and (2) whether a particular environment encourages developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence and moral judgment? Do they differ from the normative sample? Do gender differences exist among gifted students? (2) Do adolescents who attend distinctive gifted charter schools differ in developmental profiles? Students’ performances on psychometric instruments were compared over time and by program type. Assessing moral judgment (DIT-2) and socio-emotional intelligence (BarOn EQ-I: YV), participants took pre-, mid-, and post-tests during one academic school year. Quantitative differences in growth on these psychological scales (individuals and school-wide) were examined. If a school showed change, qualitative artifacts (culture, curricula, instructional methodology, stakeholder interviews) provided insight for environmental correlation.Keywords: gifted and talented programs, moral judgment, social and emotional intelligence, socio-affective education
Procedia PDF Downloads 1941 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel
Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon
Abstract:
The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling
Procedia PDF Downloads 85