Search results for: shear volumetric strain model
17852 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications
Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken
Abstract:
High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state
Procedia PDF Downloads 33817851 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down
Authors: Vishal Kumar Singh
Abstract:
Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment
Procedia PDF Downloads 8217850 Durability Properties of Foamed Concrete with Fiber Inclusion
Authors: Hanizam Awang, Muhammad Hafiz Ahmad
Abstract:
An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glass, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000 kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4 %. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.Keywords: foamed concrete, fibres, durability, construction, geological engineering
Procedia PDF Downloads 44917849 Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension
Authors: San-Yih Lin, Hsien-Hao Teng
Abstract:
In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated.Keywords: LEX, lift/drag ratio, pitch moment, vortex burst
Procedia PDF Downloads 32617848 Numerical Analysis of the Coanda Effect on the Classical Interior Ejectors
Authors: Alexandru Dumitrache, Florin Frunzulica, Octavian Preotu
Abstract:
The flow mitigation detachment problem near solid surfaces, resulting in improved globally aerodynamic performance by exploiting the Coanda effect on surfaces, has been addressed extensively in the literature, since 1940. The research is carried on and further developed, using modern means of calculation and new experimental methods. In this paper, it is shown interest in the detailed behavior of a classical interior ejector assisted by the Coanda effect, used in propulsion systems. For numerical investigations, an implicit formulation of RANS equations for axisymmetric flow with a shear stress transport k- ω (SST model) turbulence model is used. The obtained numerical results emphasize the efficiency of the ejector, depending on the physical parameters of the flow and the geometric configuration. Furthermore, numerical investigations are carried out regarding the evolution of the Reynolds number when the jet is attached to the wall, considering three geometric configurations: sudden expansion, open cavity and sudden expansion with divergent at the inlet. Therefore, further insight into complexities involving issues such as the variety of flow structure and the related bifurcation and flow instabilities are provided. Thus, the conditions and the limits within which one can benefit from the advantages of Coanda-type flows are determined.Keywords: Coanda effect, Coanda ejector, CFD, stationary bifurcation, sudden expansion
Procedia PDF Downloads 21417847 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 24517846 Nozzle-to-Surface Distances Effect on Heat Transfer of Two-Phase Impinging Jets
Authors: Aspen W. Glaspell, Victoria J. Rouse, Brian K. Friedrich, Kyosung Choo
Abstract:
Heat transfer of two-phase impinging jet on a flat plate surface are experimentally investigated. The effects of the nozzle-to-surface distance and volumetric quality on the Nusselt number are considered. The results show that the normalized stagnation Nusselt number drastically increase with decreasing the nozzle-to-surface distance due to the jet deflection effect. Based on the experimental results, new correlations for the stagnation Nusselt number are developed as a function of the nozzle-to-surface distance.Keywords: jet impingement, water jet, air assisted, circular jet
Procedia PDF Downloads 19117845 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area
Authors: Van-Dycke Sarpong Asare, Vincent Adongo
Abstract:
Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.Keywords: tomography, characterization, consolidated, Pwalugu and seismograph
Procedia PDF Downloads 12917844 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data
Authors: Yehya Rasool, Mohit Agrawal
Abstract:
The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data
Procedia PDF Downloads 9017843 3D Model of Rain-Wind Induced Vibration of Inclined Cable
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model
Procedia PDF Downloads 48917842 Effect of Strains and Temperature on the Twinning Behavior of High Purity Titanium Compressed by Split Hopkinson Pressure Bar
Authors: Ping Zhou, Dawu Xiao, Chunli Jiang, Ge Sang
Abstract:
Deformation twinning plays an important role in the mechanical properties of Ti which has high specific strength and excellent corrosion resistance ability. To investigate the twinning behavior of Ti under high strain rate compression, the split Hopkinson pressure bar (SHPB) was adopted to deform samples to different strains at room temperature. In addition, twinning behaviors under varied temperatures of 373K, 573K and 873K were also investigated. The cylindrical-shaped samples with purity 99.995% were annealed at 1073K for 1 hour in vacuum before compression. All the deformation twins were identified by electron backscatter diffraction (EBSD) techniques. The mechanical behavior showed three-stage work hardening in stress-strain curves for samples deformed at temperature 573K and 873K, while only two stages were observed for those deformed at room temperature. For samples compressed at room temperature, the predominant twin types are {10-12}<10-11> (E1), {11-21}<11-26> (E2) and {11-21}<11-23> (C1). The secondary and tertiary twinning was observed inside some E1, E2 and C1 twins. Most of the twin boundaries of E2 acted as the nucleate sites of E1. The densities of twins increase remarkably with increment of strains. For samples compressed at relatively higher temperatures, the migration of twin boundaries of E1, E2 and C1 was observed. All the twin lamellas shorten with temperature, and nearly disappeared at 873K except some remaining E1 twins. Polygonizations of grain boundaries were observed above 573K. The microstructure intended to have a texture with c-axes parallel to compression direction with temperature increment. Factors affecting the dynamic recovery and re-crystallization were discussed.Keywords: deformation twins, EBSD, mechanical behavior, high strain rate, titanium
Procedia PDF Downloads 26117841 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows
Authors: Nadim Zgheib, Sivaramakrishnan Balachandar
Abstract:
We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis
Procedia PDF Downloads 18717840 Rheological Properties and Thermal Performance of Suspensions of Microcapsules Containing Phase Change Materials
Authors: Vinh Duy Cao, Carlos Salas-Bringas, Anna M. Szczotok, Marianne Hiorth, Anna-Lena Kjøniksen
Abstract:
The increasing cost of energy supply for the purposes of heating and cooling creates a demand for more energy efficient buildings. Improved construction techniques and enhanced material technology can greatly reduce the energy consumption needed for the buildings. Microencapsulated phase change materials (MPCM) suspensions utilized as heat transfer fluids for energy storage and heat transfer applications provide promising potential solutions. A full understanding of the flow and thermal characteristics of microcapsule suspensions is needed to optimize the design of energy storage systems, in order to reduce the capital cost, system size, and energy consumption. The MPCM suspensions exhibited pseudoplastic and thixotropic behaviour, and significantly improved the thermal performance of the suspensions. Three different models were used to characterize the thixotropic behaviour of the MPCM suspensions: the second-order structural, kinetic model was found to give a better fit to the experimental data than the Weltman and Figoni-Shoemaker models. For all samples, the initial shear stress increased, and the breakdown rate accelerated significantly with increasing concentration. The thermal performance and rheological properties, especially the selection of rheological models, will be useful for developing the applications of microcapsules as heat transfer fluids in thermal energy storage system such as calculation of an optimum MPCM concentration, pumping power requirement, and specific power consumption. The effect of temperature on the shear thinning properties of the samples suggests that some of the phase change material is located outside the capsules, and contributes to agglomeration of the samples.Keywords: latent heat, microencapsulated phase change materials, pseudoplastic, suspension, thixotropic behaviour
Procedia PDF Downloads 26617839 Autophagy in the Midgut Epithelium of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) Larvae Exposed to Various Cadmium Concentration - 6-Generational Exposure
Authors: Magdalena Maria Rost-Roszkowska, Alina Chachulska-Żymełka, Monika Tarnawska, Maria Augustyniak, Alina Kafel, Agnieszka Babczyńska
Abstract:
Autophagy is a form of cell remodeling in which an internalization of organelles into vacuoles that are called autophagosomes occur. Autophagosomes are the targets of lysosomes, thus causing digestion of cytoplasmic components. Eventually, it can lead to the death of the entire cell. However, in response to several stress factors, e.g., starvation, heavy metals (e.g., cadmium) autophagy can also act as a pro-survival factor, protecting the cell against its death. The main aim of our studies was to check if the process of autophagy, which could appear in the midgut epithelium after Cd treatment, can be fixed during the following generations of insects. As a model animal, we chose the beet armyworm Spodoptera exigua Hübner (Lepidoptera: Noctuidae), a well-known polyphagous pest of many vegetable crops. We analyzed specimens at final larval stage (5th larval stage), due to its hyperfagy, resulting in great amount of cadmium assimilate. The culture consisted of two strains: a control strain (K) fed a standard diet, and a cadmium strain (Cd), fed on standard diet supplemented with cadmium (44 mg Cd per kg of dry weight of food) for 146 generations, both strains. In addition, the control insects were transferred to the Cd supplemented diet (5 mg Cd per kg of dry weight of food, 10 mg Cd per kg of dry weight of food, 20 mg Cd per kg of dry weight of food, 44 mg Cd per kg of dry weight of food). Therefore, we obtained Cd1, Cd2, Cd3 and KCd experimental groups. Autophagy has been examined using transmission electron microscope. During this process, degenerated organelles were surrounded by a membranous phagophore and enclosed in an autophagosome. Eventually, after the autophagosome fused with a lysosome, an autolysosome was formed and the process of the digestion of organelles began. During the 1st year of the experiment, we analyzed specimens of 6 generations in all the lines. The intensity of autophagy depends significantly on the generation, tissue and cadmium concentration in the insect rearing medium. In the Ist, IInd, IIIrd, IVth, Vth and VIth generation the intensity of autophagy in the midguts from cadmium-exposed strains decreased gradually according to the following order of strains: Cd1, Cd2, Cd3 and KCd. The higher amount of cells with autophagy was observed in Cd1 and Cd2. However, it was still higher than the percentage of cells with autophagy in the same tissues of the insects from the control and multigenerational cadmium strain. This may indicate that during 6-generational exposure to various Cd concentration, a preserved tolerance to cadmium was not maintained. The study has been financed by the National Science Centre Poland, grant no 2016/21/B/NZ8/00831.Keywords: autophagy, cell death, digestive system, ultrastructure
Procedia PDF Downloads 23317838 Reliability Analysis of Partial Safety Factor Design Method for Slopes in Granular Soils
Authors: K. E. Daryani, H. Mohamad
Abstract:
Uncertainties in the geo-structure analysis and design have a significant impact on the safety of slopes. Traditionally, uncertainties in the geotechnical design are addressed by incorporating a conservative factor of safety in the analytical model. In this paper, a risk-based approach is adopted to assess the influence of the geotechnical variable uncertainties on the stability of infinite slopes in cohesionless soils using the “partial factor of safety on shear strength” approach as stated in Eurocode 7. Analyses conducted using Monte Carlo simulation show that the same partial factor can have very different levels of risk depending on the degree of uncertainty of the mean values of the soil friction angle and void ratio.Keywords: Safety, Probability of Failure, Reliability, Infinite Slopes, Sand.
Procedia PDF Downloads 57417837 Characteristics of the Wake behind a Heated Cylinder in Relatively High Reynolds Number
Authors: Morteza Khashehchi, Kamel Hooman
Abstract:
Thermal effects on the dynamics and stability of the flow past a circular cylinder operating in the mixed convection regime is studied experimentally for Reynolds number (ReD) between 1000 and 4000, and different cylinder wall temperatures (Tw) between 25 and 75°C by means of Particle Image Velocimetry (PIV). The experiments were conducted in a horizontal wind tunnel with the heated cylinder placed horizontally. With such assumptions, the direction of the thermally induced buoyancy force acting on the fluid surrounding the heated cylinder would be perpendicular to the flow direction. In each experiment, to acquire 3000 PIV image pairs, the temperature and Reynolds number of the approach flow were held constant. By adjusting different temperatures in different Reynolds numbers, the corresponding Richardson number (RiD = Gr/Re^2) was varied between 0:0 (unheated) and 10, resulting in a change in the heat transfer process from forced convection to mixed convection. With increasing temperature of the wall cylinder, significant modifications of the wake flow pattern and wake vortex shedding process were clearly revealed. For cylinder at low wall temperature, the size of the wake and the vortex shedding process are found to be quite similar to those of an unheated cylinder. With high wall temperature, however, the high temperature gradient in the wake shear layer creates a type of vorticity with opposite sign to that of the shear layer vorticity. This temperature gradient vorticity weakens the strength of the shear layer vorticity, causing delay in reaching the recreation point. In addition to the wake characteristics, the shedding frequency for the heated cylinder is determined for all aforementioned cases. It is found that, as the cylinder wall is heated, the organization of the vortex shedding is altered and the relative position of the first detached vortices with respect to the second one is changed. This movement of the first detached vortex toward the second one increases the frequency of the shedding process. It is also found that the wake closure length decreases with increasing the Richardson number.Keywords: heated cylinder, PIV, wake, Reynolds number
Procedia PDF Downloads 38917836 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation
Authors: A. Zapata, Orlando Arroyo, R. Bonett
Abstract:
Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm
Procedia PDF Downloads 7517835 The Influence of the Form of Grain on the Mechanical Behaviour of Sand
Authors: Mohamed Boualem Salah
Abstract:
The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.Keywords: angularity, eccentricity, shape particle, behavior of soil
Procedia PDF Downloads 41417834 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics
Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis
Abstract:
We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics
Procedia PDF Downloads 37417833 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant
Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet
Abstract:
Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber
Procedia PDF Downloads 23617832 Enhanced Anti-Obesity Effect of Soybean by Fermentation with Lactobacillus plantarum P1201 in 3T3-L1 Adipocyte
Authors: Chengliang Xie, Jinhyun Ryu, Hyun Joon Kim, Gyeong Jae Cho, Wan Sung Choi, Sang Soo Kang, Kye Man Cho, Dong Hoon Lee
Abstract:
Obesity has become a global health problem and a source of major metabolic diseases like type-2 diabetes, hypertension, heart disease, nonalcoholic fatty liver and cancer. Synthetic anti-obesity drugs are effective but very costly and with undesirable side effects, so natural products such as soybean are needed as an alternative for obesity treatment. Lactobacillus Plantarum P1201is a probiotic bacterial strain reported to produce conjugated linoleic acid (CLA) and increase the ratio of aglycone-isoflavone of soybean, both of which have anti-obesity effect. In this study, the anti-obesity effect of the fermented soybean extract with P1201 (FSE) will be evaluated compared with that of the soybean extract (SE) by 3T3-L1 cells as an in vitro model of adipogenesis. 3T3-L1 cells were treated with SE and FSE during the nine days of the differentiation, lipid accumulation was evaluated by oil-red staining and triglyceride content and the mRNA expression level of adipogenic or lipogenic genes were analyzed by RT-PCR and qPCR. The results showed that formation of lipid droplets in differentiated 3T3-L1 cells was inhibited and triglyceride content was reduced by 23.1% after treated with 1000 μg/mL of FSE compared with control. For SE-treated groups, no delipidating effect was observed. The effect of FSE on adipogenesis inhibition can be attributed to the down-regulation of mRNA expressionof CCAAT/enhancer binding protein (C/EBP-α), lipoprotein lipase (LPL), adiponectin, adipocyte fatty acid-binding protein (aP2), fatty acid synthesis (FAS) and CoA carboxylase (ACC). Our results demonstrated that the anti-obesity effect of soybean can be improved by fermentation with P1201, and P1201can be used as a potential probiotic bacterial strain to produce natural anti-obesity food.Keywords: fermentation, Lactobacillus plantarum P1201, obesity, soybean
Procedia PDF Downloads 33317831 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc
Authors: Minto Rattan, Tania Bose, Neeraj Chamoli
Abstract:
The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: creep, isotropic, steady-state, thermal gradient
Procedia PDF Downloads 26917830 Right Ventricular Dynamics During Breast Cancer Chemotherapy in Low Cardiovascular Risk Patients
Authors: Nana Gorgiladze, Tamar Gaprindashvili, Mikheil Shavdia, Zurab Pagava
Abstract:
Introduction/Purpose Chemotherapy is a common treatment for breast cancer, but it can also cause damage to the heart and blood vessels. This damage, known as cancer therapy-related cardiovascular toxicity (CTR-CVT), can increase the risk of heart failure and death in breast cancer patients. The left ventricle is often affected by CTR-CVT, but the right ventricle (RV) may also be vulnerable to CTR-CVT and may show signs of dysfunction before the left ventricle. The study aims to investigate how the RV function changes during chemotherapy for breast cancer by using conventional echocardiographic and global longitudinal strain (GLS) techniques. By measuring the GLS strain of the RV, researchers tend to detect early signs of CTR-CVT and improve the management of breast cancer patients. Methods The study was conducted on 28 women with low cardiovascular risk who received anthracycline chemotherapy for breast cancer. Conventional 2D echocardiography (LVEF, RVS’, TAPSE) and speckle-tracking echocardiography (STE) measurements of the left and right ventricles (LVGLS, RVGLS) were used to assess cardiac function before and after chemotherapy. All patients had normal LVEF at the beginning of the study. Cardiotoxicity was defined as a new LVEF reduction of 10 percentage points to an LVEF of 40-49% and/or a new decline in GLS of 15% from baseline, as proposed by the most recent cardio-oncology guideline. ResultsThe research found that the LVGLS decreased from -21.2%2.1% to -18.6%2.6% (t-test = -4.116; df = 54, p=0.001). The change in value LV-GLS was 2.6%3.0%. The mean percentage change of the LVGLS was 11,6%13,3%; p=0.001. Similarly, the right ventricular global longitudinal strain (RVGLS) decreased from -25.2%2.9% to -21.4%4.4% (t-test = -3.82; df = 54, p=0.001). The RV-GLS value of change was 3.8%3.6%. Likewise, the percentage decrease of the RVGLS was 15,0%14,3%, p=0.001.However, the measurements of the right ventricular systolic function (RVS) and tricuspid annular plane systolic excursion (TAPSE) were insignificant, and the left ventricular ejection fraction ( LVEF) remained unchanged.Keywords: cardiotoxicity, chemotherapy, GLS, right ventricle
Procedia PDF Downloads 7217829 Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings
Authors: Fu-Pei Hsiao, Fung-Chung Tu, Chien-Kuo Chiu
Abstract:
In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method.Keywords: seismic assessment, seismic reduction factor, residual seismic ratio, post-earthquake, reinforced concrete, building
Procedia PDF Downloads 40017828 Determination of the Some IGF and IGFBP2 Polymorphisms and Their Association with Growth and Egg Traits in Atak-S Chickens
Authors: Huseyi̇n Das, Bülent Tarim, Sunay Demi̇r, Nurçi̇n Küçükkent, Sevi̇l Cengi̇z, Engi̇n Tülek, Veci̇hi̇ Aksakal
Abstract:
Atak-S laying hens are a high-performance strain obtained by crossing of the Rhode Island Red (RIR) X the Barred Plymouth Rock (BR) and are being produced in the Ankara Poultry Research Institute since 1997. Phenotypic and genetic improving studies are continued for this strain. In this study, 2 from IGF and 1 from IGFBP2, totally 3 different SNP polymorphisms were examined in 200 Atak-S chickens. Genotypes of SNPs were compared using ANOVA to body weight and egg number thorough 32 weeks of age, body weight at sexual maturity, age at sexual maturity and also egg quality traits such as egg shell breaking strength, shell thickness, Haugh unit, albumen index, yolk index, shape index. Only IGF(a) locus was in agreement with Hardy-Weinberg equilibrium, while, the other loci were not. As a result of the performance comparisons to the 3 SNP loci, it was determined that there has a significant association (P<0.05) between only TC genotypes of the IGF(b) locus and body weight at 32 weeks of age, but there was not any association to the other traits.Keywords: Atak-S, Igf, Igfbp2, single nucleotide polymorphism
Procedia PDF Downloads 36717827 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74317826 Influencing Factors on Stability of Shale with Silt Layers at Slopes
Authors: A. K. M. Badrul Alam, Yoshiaki Fujii, Nahid Hasan Dipu, Shakil Ahmed Razo
Abstract:
Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability.Keywords: shale rock masses, silt layers, slope stability, elasto-plastic model, temporal degradation
Procedia PDF Downloads 5617825 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites
Authors: Min Ye Koo, Gyo Woo Lee
Abstract:
In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property
Procedia PDF Downloads 37117824 Effect of Bentonite on Shear Strength of Bushehr Calcareous Sand
Authors: Arash Poordana, Reza Ziaie Moayed
Abstract:
Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively.Keywords: unconfined compression test, bentonite, Bushehr, calcareous sand
Procedia PDF Downloads 13017823 Environmental Monitoring by Using Unmanned Aerial Vehicle (UAV) Images and Spatial Data: A Case Study of Mineral Exploitation in Brazilian Federal District, Brazil
Authors: Maria De Albuquerque Bercot, Caio Gustavo Mesquita Angelo, Daniela Maria Moreira Siqueira, Augusto Assucena De Vasconcellos, Rodrigo Studart Correa
Abstract:
Mining is an important socioeconomic activity in Brazil although it negatively impacts the environment. Mineral operations cause irreversible changes in topography, removal of vegetation and topsoil, habitat destruction, displacement of fauna, loss of biodiversity, soil erosion, siltation of watercourses and have potential to enhance climate change. Due to the impacts and its pollution potential, mining activity in Brazil is legally subjected to environmental licensing. Unlicensed mining operations or operations that not abide to the terms of an obtained license are taken as environmental crimes in the country. This work reports a case analyzed in the Forensic Institute of the Brazilian Federal District Civil Police. The case consisted of detecting illegal aspects of sand exploitation from a licensed mine in Federal District, nearby Brasilia city. The fieldwork covered an area of roughly 6 ha, which was surveyed with an unmanned aerial vehicle (UAV) (PHANTOM 3 ADVANCED). The overflight with UAV took about 20 min, with maximum flight height of 100 m. 592 UAV georeferenced images were obtained and processed in a photogrammetric software (AGISOFT PHOTOSCAN 1.1.4), which generated a mosaic of geo-referenced images and a 3D model in less than six working hours. The 3D model was analyzed in a forensic software for accurate modeling and volumetric analysis. (MAPTEK I-SITE FORENSIC 2.2). To ensure the 3D model was a true representation of the mine site, coordinates of ten control points and reference measures were taken during fieldwork and compared to respective spatial data in the model. Finally, these spatial data were used for measuring mining area, excavation depth and volume of exploited sand. Results showed that mine holder had not complied with some terms and conditions stated in the granted license, such as sand exploration beyond authorized extension, depth and volume. Easiness, the accuracy and expedition of procedures used in this case highlight the employment of UAV imagery and computational photogrammetry as efficient tools for outdoor forensic exams, especially on environmental issues.Keywords: computational photogrammetry, environmental monitoring, mining, UAV
Procedia PDF Downloads 319