Search results for: satellite constellation simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5630

Search results for: satellite constellation simulation

4490 Memorabilia of Suan Sunandha through Interactive User Interface

Authors: Nalinee Sophatsathit

Abstract:

The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.

Keywords: interactive user navigation, high-functionality context, situational context, human-computer interaction

Procedia PDF Downloads 353
4489 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 64
4488 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 145
4487 Dynamic Fault Tree Analysis of Dynamic Positioning System through Monte Carlo Approach

Authors: A. S. Cheliyan, S. K. Bhattacharyya

Abstract:

Dynamic Positioning System (DPS) is employed in marine vessels of the offshore oil and gas industry. It is a computer controlled system to automatically maintain a ship’s position and heading by using its own thrusters. Reliability assessment of the same can be analyzed through conventional fault tree. However, the complex behaviour like sequence failure, redundancy management and priority of failing of events cannot be analyzed by the conventional fault trees. The Dynamic Fault Tree (DFT) addresses these shortcomings of conventional Fault Tree by defining additional gates called dynamic gates. Monte Carlo based simulation approach has been adopted for the dynamic gates. This method of realistic modeling of DPS gives meaningful insight into the system reliability and the ability to improve the same.

Keywords: dynamic positioning system, dynamic fault tree, Monte Carlo simulation, reliability assessment

Procedia PDF Downloads 768
4486 Performance Analysis of the Precise Point Positioning Data Online Processing Service and Using for Monitoring Plate Tectonic of Thailand

Authors: Nateepat Srivarom, Weng Jingnong, Serm Chinnarat

Abstract:

Precise Point Positioning (PPP) technique is use to improve accuracy by using precise satellite orbit and clock correction data, but this technique is complicated methods and high costs. Currently, there are several online processing service providers which offer simplified calculation. In the first part of this research, we compare the efficiency and precision of four software. There are three popular online processing service providers: Australian Online GPS Processing Service (AUSPOS), CSRS-Precise Point Positioning and CenterPoint RTX post processing by Trimble and 1 offline software, RTKLIB, which collected data from 10 the International GNSS Service (IGS) stations for 10 days. The results indicated that AUSPOS has the least distance root mean square (DRMS) value of 0.0029 which is good enough to be calculated for monitoring the movement of tectonic plates. The second, we use AUSPOS to process the data of geodetic network of Thailand. In December 26, 2004, the earthquake occurred a 9.3 MW at the north of Sumatra that highly affected all nearby countries, including Thailand. Earthquake effects have led to errors of the coordinate system of Thailand. The Royal Thai Survey Department (RTSD) is primarily responsible for monitoring of the crustal movement of the country. The difference of the geodetic network movement is not the same network and relatively large. This result is needed for survey to continue to improve GPS coordinates system in every year. Therefore, in this research we chose the AUSPOS to calculate the magnitude and direction of movement, to improve coordinates adjustment of the geodetic network consisting of 19 pins in Thailand during October 2013 to November 2017. Finally, results are displayed on the simulation map by using the ArcMap program with the Inverse Distance Weighting (IDW) method. The pin with the maximum movement is pin no. 3239 (Tak) in the northern part of Thailand. This pin moved in the south-western direction to 11.04 cm. Meanwhile, the directional movement of the other pins in the south gradually changed from south-west to south-east, i.e., in the direction noticed before the earthquake. The magnitude of the movement is in the range of 4 - 7 cm, implying small impact of the earthquake. However, the GPS network should be continuously surveyed in order to secure accuracy of the geodetic network of Thailand.

Keywords: precise point positioning, online processing service, geodetic network, inverse distance weighting

Procedia PDF Downloads 184
4485 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir V. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics

Procedia PDF Downloads 373
4484 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit

Authors: Prabal Singh Verma

Abstract:

Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.

Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration

Procedia PDF Downloads 373
4483 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 98
4482 Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die

Authors: Mehdi Modabberifar, Behrouz Raad, Bahman Mirzakhani

Abstract:

Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.

Keywords: die casting, finite element, flange, helical gearbox

Procedia PDF Downloads 360
4481 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia

Authors: Ahmad Zamzam

Abstract:

With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.

Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy

Procedia PDF Downloads 121
4480 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System

Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian

Abstract:

In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.

Keywords: dispatching, solar ingot, simulation, flexsim

Procedia PDF Downloads 294
4479 Simulation and Optimization of an Annular Methanol Reformer

Authors: Shu-Bo Yang, Wei Wu, Yuan-Heng Liu

Abstract:

This research aims to design a heat-exchanger type of methanol reformer coupled with a preheating design in gPROMS® environment. The endothermic methanol steam reforming reaction (MSR) and the exothermic preferential oxidation reaction (PROX) occur in the inner tube and the outer tube of the reformer, respectively. The effective heat transfer manner between the inner and outer tubes is investigated. It is verified that the countercurrent-flow type reformer provides the higher hydrogen yield than the cocurrent-flow type. Since the hot spot temperature appears in the outer tube, an improved scheme is proposed to suppress the hot spot temperature by splitting the excess air flowing into two sites. Finally, an optimization algorithm for maximizing the hydrogen yield is employed to determine optimal operating conditions.

Keywords: methanol reformer, methanol steam reforming, optimization, simulation

Procedia PDF Downloads 327
4478 Physical Habitat Simulation and Comparison within a Lerma River Reach, with Respect to the Same but Modified Reach, to Create a Linear Park

Authors: Garcia-Rodriguez Ezequiel, Luis A. Ochoa-Franco, Adrian I. Cervantes-Servin

Abstract:

In this work, the Ictalurus punctatus species estimated available physical habitat is compared with the estimated physical habitat for the same but modified river reach, with the aim of creating a linear park, along a length of 5 500 m. To determine the effect of ecological park construction, on physical habitat of the Lerma river stretch of study, first, the available habitat for the Ictalurus punctatus species was estimated through the simulation of the physical habitat, by using surveying, hydraulics, and habitat information gotten at the river reach in its actual situation. Second, it was estimated the available habitat for the above species, upon the simulation of the physical habitat through the proposed modification for the ecological park creation. Third, it is presented a comparison between both scenarios in terms of available habitat estimated for Ictalurus punctatus species, concluding that in cases of adult and spawning life stages, changes in the channel to create an ecological park would produce a considerable loss of potentially usable habitat (PUH), while in the case of the juvenile life stage PUH remains virtually unchanged, and in the case of life stage fry the PUH would increase due to the presence of velocities and depths of lesser magnitude, due to the presence of minor flow rates and lower volume of the wet channel. It is expected that habitat modification for linear park construction may produce the lack of Ictalurus punktatus species conservation at the river reach of the study.

Keywords: Habitat modification, Ictalurus punctatus, Lerma, river, linear park

Procedia PDF Downloads 472
4477 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 239
4476 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 431
4475 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 289
4474 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: woven composite, aerospace applications, finite element method, mechanical properties

Procedia PDF Downloads 453
4473 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 343
4472 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche

Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz

Abstract:

Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.

Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle

Procedia PDF Downloads 115
4471 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 212
4470 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes

Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari

Abstract:

Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.

Keywords: emotion, learning process, multi-agent simulation, serious games

Procedia PDF Downloads 395
4469 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices

Authors: Mirvat Shamseddine, Issam Lakkis

Abstract:

We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.

Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows

Procedia PDF Downloads 298
4468 Design of H-Shape X-band Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan H. Desai, Trushit Upadhyaya

Abstract:

This paper presents a new small electrically antenna rectangular X- band micro-strip patch antenna loaded with material Rogers RT/duroid 5870 (tm). The present discussion focuses on small Electrically antenna which are electrically small compared to wave length the performance of electrically small antenna are closely related to their electrical size, the gain can be increased to maintain the efficiency of the radiator. Basically micro-strip Patch antennas have been used in satellite communications and for their good characteristics such as lightness, low cost, and so on. Here in the design H- shape folded dipole, which increase the band width of the antenna.

Keywords: electrically small antennas, X-band application, antenna, micro-strip patch, frequency antenna, feed, gain

Procedia PDF Downloads 459
4467 Comparison of Medical Students Evaluation by Serious Games and Clinical Case-Multiple Choice Questions

Authors: Chamtouri I., Kechida M.

Abstract:

Background: Evaluation has a prominent role in medical education and graduation. This evaluation has usually done in face-to-face, by written or oral questions. Simulation is increasingly taking a part as a method of evaluation. Due to the Covid-19 pandemic, which disrupted face-to-face evaluation, simulation using serious games (SG) is emerging in the field of training and assessment of medical students. The aim of our study is to compare the results of the evaluation of medical students by virtual simulation by online serious games versus clinical case-multiple choice questions (MCQ) and to assess the degree of satisfaction from these two evaluation methods. Methods: Medical students from the same study level were voluntarily participated in this study. Groupe 1 had an evaluation by SG dealing with “diagnosis and management of ST-segment elevationmyocardialinfarction (STEMI)alreadyprepared on the website www.Mediactiv.com. Groupe 2 were evaluated by clinical case-MCQ having thes same topic as SG. Results of the two groups were compared. Satisfaction questionnaire was filled by the two groups. Satisfaction degree was compared between the two groups. Results. In this study, 64 medical students (G1:31 and G2: 33) were enrolled. Obtaining complete notes in the "questioning" and "clinical examination" parts is significantly more important in-group 1 compared to group 2. No significant difference detected between the two groups in terms of “ECG interpretation” and “diagnosis of STEMI” parts. A greater number of students of group 1 obtained the full note compared to group 2 in “the initial treatment part” (54.8% vs. 39.4%; p = 0.04). Thirty learners (96.8%) in-group 1 obtained a total score ≥ 50% versus 69.7% in-group 2 (p = 0.004). The full score of 100% was obtained in three learners in-group1, while no student scored 100% in-group2 (p = 0.027). Medical evaluation using SG was reported as more innovative, fun, and realistic compared to evaluation by clinical case-MCQ. No significant difference detected between the two methods in terms of stress. Conclusion: Simulation by SG can be considered as an innovative and effective method in evaluating medical students with a higher degree of satisfaction.

Keywords: evaluation, serious games, medical students, satisfaction

Procedia PDF Downloads 137
4466 Simulation for the Magnetized Plasma Compression Study

Authors: Victor V. Kuzenov, Sergei V. Ryzhkov

Abstract:

Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed.

Keywords: magnetized target, magneto-inertial fusion, mathematical model, plasma and laser beams

Procedia PDF Downloads 289
4465 Multi-Band, Polarization Insensitive, Wide Angle Receptive Metamaterial Absorber for Microwave Applications

Authors: Lincy Stephen, N. Yogesh, G. Vasantharajan, V. Subramanian

Abstract:

This paper presents the design and simulation of a five band metamaterial absorber at microwave frequencies. The absorber unit cell consists of squares and strips arranged as the top layer and a metallic ground plane as the bottom layer on a dielectric substrate. Simulation results show five near perfect absorption bands at 3.15 GHz, 7.15 GHz, 11.12 GHz, 13.87 GHz, and 16.85 GHz with absorption magnitudes 99.68%, 99.05%, 96.98%, 98.36% and 99.44% respectively. Further, the proposed absorber exhibits polarization insensitivity and wide angle receptivity. The surface current analysis is presented to explain the mechanism of absorption in the structure. With these preferable features, the proposed absorber can be excellent choice for potential applications such as electromagnetic interference (EMI) shielding, radar cross section reduction.

Keywords: electromagnetic absorber, metamaterial, multi- band, polarization insensitive, wide angle receptive

Procedia PDF Downloads 335
4464 Parking Service Effectiveness at Commercial Malls

Authors: Ahmad AlAbdullah, Ali AlQallaf, Mahdi Hussain, Mohammed AlAttar, Salman Ashknani, Magdy Helal

Abstract:

We study the effectiveness of the parking service provided at Kuwaiti commercial malls and explore potential problems and feasible improvements. Commercial malls are important to Kuwaitis as the entertainment and shopping centers due to the lack of other alternatives. The difficulty and relatively long times wasted in finding a parking spot at the mall are real annoyances. We applied queuing analysis to one of the major malls that offer paid-parking (1040 parking spots) in addition to free parking. Patrons of the mall usually complained of the traffic jams and delays at entering the paid parking (average delay to park exceeds 15 min for about 62% of the patrons, while average time spent in the mall is about 2.6 hours). However, the analysis showed acceptable service levels at the check-in gates of the parking garage. Detailed review of the vehicle movement at the gateways indicated that arriving and departing cars both had to share parts of the gateway to the garage, which caused the traffic jams and delays. A simple comparison we made indicated that the largest commercial mall in Kuwait does not suffer such parking issues, while other smaller, yet important malls do, including the one we studied. It was suggested that well-designed inlets and outlets of that gigantic mall permitted smooth parking despite being totally free and mall is the first choice for most people for entertainment and shopping. A simulation model is being developed for further analysis and verification. Simulation can overcome the mathematical difficulty in using non-Poisson queuing models. The simulation model is used to explore potential changes to the parking garage entrance layout. And with the inclusion of the drivers’ behavior inside the parking, effectiveness indicators can be derived to address the economic feasibility of extending the parking capacity and increasing service levels. Outcomes of the study are planned to be generalized as appropriate to other commercial malls in Kuwait

Keywords: commercial malls, parking service, queuing analysis, simulation modeling

Procedia PDF Downloads 337
4463 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 375
4462 Cardiovascular Modeling Software Tools in Medicine

Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz

Abstract:

The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools.  For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.

Keywords: cardiovascular system, MODELICA simulation software, physical modelling, teaching tool

Procedia PDF Downloads 295
4461 Analysis of Strategies to Reduce Patients’ Disposition Holding Time from Emergency Department to Ward

Authors: Kamonwat Suksumek, Seeronk Prichanont

Abstract:

Access block refers to the situation where Emergency Department (ED) patients requiring hospital admission spend an unreasonable holding time in an ED because their access to a ward is blocked by the full utilization of the ward’s beds. Not only it delays the proper treatments required by the patients, but access block is also the cause of ED’s overcrowding. Clearly, access block is an inter-departmental problem that needs to be brought to management’s attention. This paper focuses on the analysis of strategies to address the access block problem, both in the operational and intermediate levels. These strategies were analyzed through a simulation model with a real data set from a university hospital in Thailand. The paper suggests suitable variable levels for each strategy so that the management will make the final decisions.

Keywords: access block, emergency department, health system analysis, simulation

Procedia PDF Downloads 403