Search results for: normal concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4551

Search results for: normal concrete

3411 Managing the Water Projects and Controlling Its Boundary Disturbances Which Affect the Water Supply

Authors: Sead A. Bakheet, Salah M. Elkoum, Asharaf A. Almaghribi

Abstract:

Disturbance defined as activity that malfunction, intrusion, or interruption. We have to look around for the source of the disturbance affecting the inputs and outputs of engineering projects, take the necessary actions to control them. In this paper we will present and discuss a production system consisting of three elements, inputs, the production process and outputs. The production process which we chose is the production of large diameter pre-stressed concrete cylinder pipes (out puts), in reality, the outputs are the starting points of the operation (laying the concrete pipes for transporting drinkable water). The main objective also to address the controlling methods of the natural resources and raw materials (basic inputs), study the disturbances affecting them as well as the output quality. The importance of making the right decision, which effect the final product quality will be summarized. Finally, we will address the proposals regarding the managing of secure water supply to the customers.

Keywords: disturbances, management, inputs, outputs, decision

Procedia PDF Downloads 59
3410 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 289
3409 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two

Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine

Abstract:

This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.

Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls

Procedia PDF Downloads 333
3408 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization

Procedia PDF Downloads 255
3407 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles

Authors: Sofina Faith C. Navarro, Luke V. Subala, Rica H. Gatus, Alfonzo Ramon DG. Burguete

Abstract:

Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile, C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.

Keywords: raffia palm fiber, flexural strength, lightweightness, Manila Clam Shells

Procedia PDF Downloads 56
3406 Utilization of Manila Clam Shells (Venerupis Philippinarum) and Raffia Palm Fiber (Raphia Farinifera) as an Additive in Producing Concrete Roof Tiles

Authors: Alfonzo Ramon Burguete, Rica Gatus, Sofina Faith Navarro, Luke Subala

Abstract:

Roof tiles, as integral components of buildings, play a crucial role in protecting structures from many things. The study focuses on the production of sustainable roof tiles that address the waste disposal challenges associated with Manila clam shells and mitigate the environmental impact of conventional roof tile materials. Various concentrations of roof tiles are developed, incorporating different proportions of powdered clam shell that contains calcium carbonate and shredded raffia palm fiber. Subsequently, the roof tiles are cast using standard methods and transported to the University of the Philippines Institute of Civil Engineering (UP-ICE) for flexural strength testing. In conclusion, the research aimed to assess the flexural durability of concrete roof tiles with varying concentrations of Raffia Palm Fiber and Manila Clam Shells additives. The findings indicate notable differences in maximum load capacities among the specimens, with C3.1 emerging as the concentration with the highest load-bearing capacity at 313.59729 N. This concentration, with a flexural strength of 2.15214, is identified as the most durable option, with a slightly heavier weight of 1.10 kg. On the other hand, C2.2, with a flexural strength of 0.366 and a weight of 0.80 kg, is highlighted for its impressive durability performance while maintaining a lighter composition. Therefore, for the production of concrete roof tile C3.1 is recommended for optimal durability, while C2.2 is suggested as a preferable option considering both durability and lightweight characteristics.

Keywords: manila clam shells, raffia palm fiber, flexural strength, lightweightness

Procedia PDF Downloads 56
3405 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 153
3404 A U-shaped Relationship between Body Mass Index and Dysmenorrhea: A Longitudinal Study

Authors: H. Ju, M. Jones, G. D. Mishra

Abstract:

Introduction: Limited longitudinal studies have examined the relationship between BMI and dysmenorrhea, resulting in mixed results. This study aims to investigate the long-term association between BMI and dysmenorrhea. Methods: 9,688 women from Australian Longitudinal Study on Women’s Health (ALSWH), a prospective population-based cohort study, were followed for 13 years. Data were collected through self-reported questionnaires repeatedly on all variables, including dysmenorrhea, weight and height. The longitudinal association between dysmenorrhea and BMI or BMI transition (change of BMI categories between two successive surveys) was investigated by generalized estimating equations. Results: When the women were aged 22 to 27 years, approximately 11% were obese, 7% underweight, and 25% reported dysmenorrhea. Over the study period, the prevalence of obesity doubled whereas that of underweight declined substantially. The prevalence of dysmenorrhea remained relatively stable. Compared to women with a normal weight, significantly higher odds of reporting dysmenorrhea were detected for both women who were underweight (odds ratio (OR) 1.25, 95% confidence interval (CI) 1.09, 1.43) and obese (OR 1.20, 95% CI 1.10, 1.31). Being overweight was not associated with increased risk of dysmenorrhea. Compared to women who remained at normal weight or overweight over time, significant risk was detected for women who: remained underweight or obese (OR 1.35, 95% CI 1.23, 1.49), were underweight but became normal or overweight (OR 1.29, 95% CI 1.11, 1.50), became underweight (OR 1.24, 95% CI 1.01, 1.52). However, the higher risk among obese women disappeared when they lost weight and became normal weight or overweight (OR 1.07, 95% CI 0.87, 1.30). Conclusions: A U-shaped association was revealed between dysmenorrhea and BMI, revealing higher risk of dysmenorrhea for both underweight and obese women. Further, the risk disappeared when obese women lost weight and acquired a healthier BMI. However obesity certainly poses a greater burden of disease from the public health perspective, thus requires greater effort to tackle the increasing problem at the population level. It is important to maintain a healthy weight over time for women to enjoy a better reproductive health.

Keywords: body mass index, dysmenorrhea, obesity, painful period, underweight

Procedia PDF Downloads 321
3403 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 147
3402 Protection of Steel Bars in Reinforce Concrete with Zinc Based Coverings

Authors: Hamed Rajabzadeh Gatabi, Soroush Dastgheibifard, Mahsa Asnafi

Abstract:

There is no doubt that reinforced concrete is known as one of the most significant materials which is used in construction industry for many years. Although, some natural elements in dealing with environment can contribute to its corrosion or failure. One of which is bar or so-called reinforcement failure. So as to combat this problem, one of the oxidization prevention methods investigated was the barrier protection method implemented over the application of an organic coating, specifically fusion-bonded epoxy. In this study comparative method is prepared on two different kinds of covered bars (zinc-riches epoxy and polyamide epoxy coated bars) and also uncoated bar. With the aim of evaluate these reinforced concretes, the stickiness, toughness, thickness and corrosion performance of coatings were compared by some tools like Cu/CuSo4 electrodes, EIS and etc. Different types of concretes were exposed to the salty environment (NaCl 3.5%) and their durability was measured. As stated by the experiments in research and investigations, thick coatings (named epoxies) have acceptable stickiness and strength. Polyamide epoxy coatings stickiness to the bars was a bit better than that of zinc-rich epoxy coatings; nonetheless it was stiffer than the zinc rich epoxy coatings. Conversely, coated bars with zinc-rich epoxy showed more negative oxidization potentials, which take revenge protection of bars by zinc particles. On the whole, zinc-rich epoxy coverings is more corrosion-proof than polyamide epoxy coatings due to consuming zinc elements and some other parameters, additionally if the epoxy coatings without surface defects are applied on the rebar surface carefully, it can be said that the life of steel structures is subjected to increase dramatically.

Keywords: surface coating, epoxy polyamide, reinforce concrete bars, salty environment

Procedia PDF Downloads 286
3401 Selective Attention as a Search for the Deceased during the Mourning Process

Authors: Sonia Sirtoli Färber

Abstract:

Objective: This study aims to investigate selective attention in the process of mourning, as a normal reaction to loss. Method: In order to develop this research, we used a systematic bibliographic review, following the process of investigation, cataloging, careful evaluation and synthesis of the documentation, associated with the method of thanatological hemenutics proposed by Elisabeth Kübler-Ross. Conclusion: After a significant loss, especially the death of a loved one or family member, it is normal for the mourner, motivated by absence, to have a false perception of the presence of the deceased. This phenomenon happens whenever the mourner is in the middle of the crowd, because his selective attention causes him to perceive physical characteristics, tone of voice, or feel fragrance of the perfume that the deceased possessed. Details characterizing the dead are perceived by the mourner because he seeks the presence in the absence.

Keywords: Elisabeth Kübler-Ross, mourning, selective attention, thanatology

Procedia PDF Downloads 412
3400 Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study

Authors: Adriana de Paula Lacerda Santos, Bruna Godke, Mauro Lacerda Santos Filho

Abstract:

Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams.

Keywords: concrete gravity dam, dams safety, instrumentation, simple linear correlation

Procedia PDF Downloads 288
3399 Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI

Authors: A. E. Kurtoglu, A. Cevik, M. Bilgehan

Abstract:

In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results.

Keywords: factor of safety, finite element method, safety of structures, soil structure interaction

Procedia PDF Downloads 502
3398 Pilot Program for the Promotion of Normal Childbirth in the North, Northeast and Midwest of Brazil

Authors: Natália Bruno Chaves, Richardes Caúla, Roosevelt do Vale, Daniela Toneti, Rafaela Carvalho, Renata Silva Lopes, Antônio Carlos Júnior, Adner Nobre, Viviane Santiago, Yara Alana Caldato, Estefania Rodriguez Urrego, André Buarque Lemos, Catarina Nucci Stetner, Marcos Mauro Barreto, Stefany Moreira Lima, Mara Cavalcante, Ticiane Ribeiro

Abstract:

The Well Born (Nascer Bem – in Portuguese) Program was created in the Hapvida health network with the aim of improving access to safe and quality prenatal care for users. In addition to offering a line of prenatal care, the inclusion of obstetric nursing and the decentralization of childbirth, bring security that professionals did not indicate the route of delivery for professional convenience. The introduction of the nursing consultation came to reinforce the care to our users, strengthening their bond and reception. In 2021, the program maintained an average of 40% of normal births in the north, northeast and central-west regions of Brazil, an average above that observed in the rest of the country's private health systems, around 20%. In addition, the neonatal hospitalization rate of this population remained around 5.1%, a figure below the national average. With these data, the “Nascer Bem” program is affirmed as a safe and effective strategy for the promotion of safe normal birth.

Keywords: quality, safe, prenatal, obstetric nursing

Procedia PDF Downloads 116
3397 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics

Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe

Abstract:

Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.

Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test

Procedia PDF Downloads 107
3396 Application of NBR 14861: 2011 for the Design of Prestress Hollow Core Slabs Subjected to Shear

Authors: Alessandra Aparecida Vieira França, Adriana de Paula Lacerda Santos, Mauro Lacerda Santos Filho

Abstract:

The purpose of this research i to study the behavior of precast prestressed hollow core slabs subjected to shear. In order to achieve this goal, shear tests were performed using hollow core slabs 26,5cm thick, with and without a concrete cover of 5 cm, without cores filled, with two cores filled and three cores filled with concrete. The tests were performed according to the procedures recommended by FIP (1992), the EN 1168:2005 and following the method presented in Costa (2009). The ultimate shear strength obtained within the tests was compared with the values of theoretical resistant shear calculated in accordance with the codes, which are being used in Brazil, noted: NBR 6118:2003 and NBR 14861:2011. When calculating the shear resistance through the equations presented in NBR 14861:2011, it was found that provision is much more accurate for the calculation of the shear strength of hollow core slabs than the NBR 6118 code. Due to the large difference between the calculated results, even for slabs without cores filled, the authors consulted the committee that drafted the NBR 14861:2011 and found that there is an error in the text of the standard, because the coefficient that is suggested, actually presents the double value than the needed one! The ABNT, later on, soon issued an amendment of NBR 14861:2011 with the necessary corrections. During the tests for the present study, it was confirmed that the concrete filling the cores contributes to increase the shear strength of hollow core slabs. But in case of slabs 26,5 cm thick, the quantity should be limited to a maximum of two cores filled, because most of the results for slabs with three cores filled were smaller. This confirmed the recommendation of NBR 14861:2011which is consistent with standard practice. After analyzing the configuration of cracking and failure mechanisms of hollow core slabs during the shear tests, strut and tie models were developed representing the forces acting on the slab at the moment of rupture. Through these models the authors were able to calculate the tensile stress acting on the concrete ties (ribs) and scaled the geometry of these ties. The conclusions of the research performed are the experiments results have shown that the mechanism of failure of the hollow-core slabs can be predicted using the strut-and-tie procedure, within a good range of accuracy. In addition, the needed of the correction of the Brazilian standard to review the correction factor σcp duplicated (in NBR14861/2011), and the limitation of the number of cores (Holes) to be filled with concrete, to increase the strength of the slab for the shear resistance. It is also suggested the increasing the amount of test results with 26.5 cm thick, and a larger range of thickness slabs, in order to obtain results of shear tests with cores concreted after the release of prestressing force. Another set of shear tests on slabs must be performed in slabs with cores filled and cover concrete reinforced with welded steel mesh for comparison with results of theoretical values calculated by the new revision of the standard NBR 14861:2011.

Keywords: prestressed hollow core slabs, shear, strut, tie models

Procedia PDF Downloads 329
3395 Effect of Blast Loads on the Seismically Designed Reinforced Concrete Buildings

Authors: Jhuma Debnath, Hrishikesh Sharma

Abstract:

The work done here in this paper is dedicated to studying the effect of high blast explosives over the seismically designed buildings. Buildings are seismically designed in SAP 2000 software to simulate seismic designs of buildings using response spectrum method. Later these buildings have been studied applying blast loads with the same amount of the blast explosives. This involved varying the standoff distances of the buildings from the blast explosion. The study found out that, for a seismically designed building, the minimum standoff distance is to be at least 120m from the place of explosion for an average blast explosive weight of 20kg TNT. This has shown that the building does not fail due to this huge explosive weight of TNT but resists immediate collapse of the building. The results also show that the adverse effect of the column failure due to blasting is reduced to 73.75% from 22.5% due to the increase of the standoff distance from the blast loads. The maximum affected locations due to the blast loads are also detected in this study.

Keywords: blast loads, seismically designed buildings, standoff distance, reinforced concrete buildings

Procedia PDF Downloads 231
3394 Assessing Knowledge Management Impacts: Challenges, Limits and Base for a New Framework

Authors: Patrick Mbassegue, Mickael Gardoni

Abstract:

In a market environment centered more and more on services and the digital economy, knowledge management becomes a framework that can help organizations to create value and to improve their overall performance. Based on an optimal allocation of scarce resources, managers are interested in demonstrating the added value generated by knowledge management projects. One of the challenges faced by organizations is the difficulty in measuring impacts and concrete results of knowledge management initiatives. The present article concerns the measure of concrete results coming from knowledge management projects based on balance scorecard model. One of the goals is to underline what can be done based on this model but also to highlight the limits associated. The present article is structured in five parts; 1-knowledge management projects and organizational impacts; 2- a framework and a methodology to measure organizational impacts; 3- application illustrated in two case studies; 4- limits concerning the proposed framework; 5- the proposal of a new framework to measure organizational impacts.

Keywords: knowledge management, project, balance scorecard, impacts

Procedia PDF Downloads 260
3393 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover

Procedia PDF Downloads 416
3392 Determination of the Optimal Content of Commercial Superplasticizer Additives in Cements with Calcined Clay

Authors: Amanda R. Teixeira, João H. S. Rego, Gabriel F. S. Brito, Fabricio M. Silva

Abstract:

The use of superplasticizer additives has provided several advances for the civil construction industry, enabling gains in the rheological behavior and mechanical properties of cementitious matrices. These compounds act at the solid-liquid interface of colloidal suspensions of cement pastes, preventing agglomeration of the particles. Although the use in the concrete industry is wide, the mechanisms of dispersion of concrete admixtures composed of polycarboxylate in cement with supplementary cementitious materials have ample opportunity to be investigated, providing the attainment of increasingly compatible and efficient cement-addition-additive systems. The cements used in the research are Portland Cement CPV and two cements Portland Cement Composite (CPIV) with calcined clay contents of 20% and 28% and three commercial additives based on polycarboxylate. The performance of the additives and obtaining the optimal content was determined by the Marsh Cone test and spread by Mini-Slump.

Keywords: calcined clay, composite cements, superplasticizer additives, polycarboxylate

Procedia PDF Downloads 97
3391 Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System

Authors: Mohamed Barbary, Mohamed H. Abd El-Azeem

Abstract:

Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, MM-MB-TBD filter

Procedia PDF Downloads 71
3390 Vestibular Dysfunction in Post-Acute Sequelae of SARS-CoV-2 Infection: A Gait Analysis Pilot Study

Authors: Adar Pelah, Avraham Adelman, Amanda Balash, Jake Mitchell, Mattan J. Pelah, Viswadeep Sarangi, Xin Chen Cai, Zadok Storkey, Gregg B. Fields, Ximena Levy, Ali A. Danesh

Abstract:

Introduction: Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection (PASC), or Long COVID, while primarily a respiratory disorder, can also include dizziness, lasting weeks to months in individuals who had previously tested positive for COVID-19. This study utilized gait analysis to assess the potential vestibular effects of PASC on the presentation of gait anomalies. Materials and Methods: The study included 11 participants who tested positive for COVID-19, a mean of 2.8 months prior to gait testing (PP=11), and 8 control participants who did not test positive for COVID-19 (NP=8). Participants walked 7.5m at three self-selected speeds: ‘slow,’ ‘normal,’ and ‘fast.’ Mean walking speeds were determined for each speed and overall range from four laps on an instrumented walkway using video capture. Results: A Z-test at 0.05 significance was used for speed range, ‘normal’ and ‘fast’ at the lower tail, and for ‘slow’ at the higher tail. Average speeds (m/s) were: ‘slow’ (PP=0.709, NP=0.678), ‘normal’ (PP=1.141, NP=1.170), ‘fast’ (PP=1.529, NP=1.821), average range (PP=0.846, NP=1.143). Significant speed decreases between PP and NP were observed in ‘fast’ (-17.43%) and average range (-29.86%), while changes in ‘slow’ (+2.44%) and ‘normal’ (-4.39%) speeds were not significant. Conclusions: Long COVID is a recognized disability (Americans with Disabilities Act), and although it presents variably, dizziness, vertigo, and tinnitus are not uncommon in COVID-19 infection. These results suggest that potential inner-ear damage may persist and manifest in gait changes even after recovery from acute illness. Further research with a larger sample size may indicate the need for providers to consider PASC when diagnosing patients with vestibular dysfunction.

Keywords: gait analysis, long-COVID, vestibular dysfunction, walking speed

Procedia PDF Downloads 120
3389 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample

Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos

Abstract:

Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.

Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD

Procedia PDF Downloads 154
3388 Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups

Authors: Guray Arslan, Riza Secer Orkun Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: finite element, flexural reinforcement, reinforced concrete beam, shear strength

Procedia PDF Downloads 326
3387 Triadic Relationship of Icon Design for Semi-Literate Communities

Authors: Peng-Hui Maffee Wan, Klarissa Ting Ting Chang, Rax Suen Chun Lung

Abstract:

Icons, or pictorial and graphical objects, are commonly used in Human-Computer Interaction (HCI) fields as the mediator in order to communicate information to users. Yet there has been little studies focusing on a majority of the world’s population, semi-literate communities, in terms of the fundamental know-how for designing icons for such population. In this study, two sets of icons belonging in different icon taxonomy, abstract and concrete are designed for a mobile application for semi-literate agricultural communities. In this paper, we propose a triadic relationship of an icon, namely meaning, task and mental image, which inherits the triadic relationship of a sign. User testing with the application and a post-pilot questionnaire are conducted as the experimental approach in two rural villages in India. Icons belonging to concrete taxonomy perform better than abstract icons on the premise that the design of the icon fulfills the underlying rules of the proposed triadic relationship.

Keywords: icon, GUI, mobile app, semi-literate

Procedia PDF Downloads 484
3386 Oxidative Status and Some Serum Macro Minerals during Estrus, Anestrous and Repeat Breeding in Cholistani Cattle

Authors: Farah Ali, Laeeq Akbar Lodhi, Riaz Hussain, Muhammad Sufyan

Abstract:

The present study was conducted to determine the macro mineral profile and biomarkers of oxidative stress in Cholistani cattle kept at a public farm and various villages in district Bahawalpur. For this purpose 90 blood samples were collected each from estrual, anestrous and repeat breeding cattle having different age and lactation number. Reproductive tract examination of all the cattle was carried out to determine the reproductive status. Blood samples without EDTA were collected for serum separation at day of estrus (normal cyclic), repeat breeder and anestrous cows. The serum calcium levels were significantly decreased (P<0.05) in anestrous (7.31±0.02 mg/dl) cattle as compared to estrus. However, these values were non-significantly different between repeat breeder and cattle having estrus phase. The concentrations of serum phosphorus were significantly higher (P<0.01) in normal estrual (4.99±0.08 mg/dl) as compared torepeat breeder (3.90±0.06 mg/dl) and anestrous (3.82±0.04 mg/dl) Cholistani cattle. Mean serum MDA (nmol/ml) levels of repeat breeder (2.68±0.18) and anestrous (2.54±0.22) were significantly(P<0.01) higher than the estrous (1.71±0.03) cattle. Moreover, the serum nitric oxide levels(µmol/L) were also increased significantly (P<0.01) in repeat breeder(58.28±4.01)and anestrous (61.40±9.40) than the normalestrous (31.67±6.71) cattle. The ratio of Ca: P in normal cyclic animals was lower (1.73:1) as compared to the anestrous animals (1.92:1). It can be concluded from the present study that the level of Ca: P should also be near to 1.5:1 for better reproductive performance.

Keywords: anestrus, cholistani cattle, minerals, oxidative stress, repeat breeder

Procedia PDF Downloads 596
3385 A Conundrum of Teachability and Learnability of Deaf Adult English as Second Language Learners in Pakistani Mainstream Classrooms: Integration or Elimination

Authors: Amnah Moghees, Saima Abbas Dar, Muniba Saeed

Abstract:

Teaching a second language to deaf learners has always been a challenge in Pakistan. Different approaches and strategies have been followed, but they have been resulted into partial or complete failure. The study aims to investigate the language problems faced by adult deaf learners of English as second language in mainstream classrooms. Moreover, the study also determines the factors which are very much involved in language teaching and learning in mainstream classes. To investigate the language problems, data will be collected through writing samples of ten deaf adult learners and ten normal ESL learners of the same class; whereas, observation in inclusive language teaching classrooms and interviews from five ESL teachers in inclusive classes will be conducted to know the factors which are directly or indirectly involved in inclusive language education. Keeping in view this study, qualitative research paradigm will be applied to analyse the corpus. The study figures out that deaf ESL learners face severe language issues such as; odd sentence structures, subject and verb agreement violation, misappropriation of verb forms and tenses as compared to normal ESL learners. The study also predicts that in mainstream classrooms there are multiple factors which are affecting the smoothness of teaching and learning procedure; role of mediator, level of deaf learners, empathy of normal learners towards deaf learners and language teacher’s training.

Keywords: deaf English language learner, empathy, mainstream classrooms, previous language knowledge of learners, role of mediator, language teachers' training

Procedia PDF Downloads 161
3384 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 211
3383 Association Between Malnutrition and Dental Caries in Children

Authors: Mohammed Khalid Mahmood, Delphine Tardivo, Romain Lan

Abstract:

Dental caries is one of the most common diseases in the world, affecting billions of people and significantly lowering the quality of life. Malnutrition, on the other hand, is defined as inadequate, imbalanced, or excessive consumption of macronutrients, micronutrients, or both, which is characterized as an abnormal physiological condition. Oral health is impacted by malnutrition, and malnutrition can result from poor oral health. The objective of this paper was to study the association of serum Vitamin D level and body mass index as representatives of malnutrition at micro and macro levels, respectively, on dental caries. Results showed that: 1. The majority of the population studied (70%) are Vitamin D deficient. 2. Having a normal and even a sufficient level of serum Vitamin D and having a normal body mass index increase the chances of children being caries-free and having a lower caries index.

Keywords: children, dental Caries, malnutrition, vitamin D

Procedia PDF Downloads 74
3382 The Effect of Non-Normality on CB-SEM and PLS-SEM Path Estimates

Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim

Abstract:

The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are non-normal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and non-normality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under non-normality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.

Keywords: CB-SEM, Monte Carlo simulation, normality conditions, non-normality, PLS-SEM

Procedia PDF Downloads 405