Search results for: node classification
1485 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks
Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet
Abstract:
In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network
Procedia PDF Downloads 2391484 A Survey of Baseband Architecture for Software Defined Radio
Authors: M. A. Fodha, H. Benfradj, A. Ghazel
Abstract:
This paper is a survey of recent works that proposes a baseband processor architecture for software defined radio. A classification of different approaches is proposed. The performance of each architecture is also discussed in order to clarify the suitable approaches that meet software-defined radio constraints.Keywords: multi-core architectures, reconfigurable architectures, software defined radio, baseband processor
Procedia PDF Downloads 4751483 Vibration Analysis of Power Lines with Moving Dampers
Authors: Mohammad Bukhari, Oumar Barry
Abstract:
In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies.Keywords: absorber performance, Aeolian vibration, Hamilton’s principle, stockbridge damper
Procedia PDF Downloads 2671482 Advanced Technologies and Algorithms for Efficient Portfolio Selection
Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis
Abstract:
In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.Keywords: portfolio selection, optimization techniques, financial models, stochastic, heuristics
Procedia PDF Downloads 4321481 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 4321480 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem
Procedia PDF Downloads 721479 A Prediction Model of Adopting IPTV
Authors: Jeonghwan Jeon
Abstract:
With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.Keywords: prediction, adoption, IPTV, CaRBS
Procedia PDF Downloads 4121478 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm
Authors: Lydia Novozhilova, Vladimir Urazhdin
Abstract:
An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier
Procedia PDF Downloads 3271477 Tibial Plateau Fractures During Covid-19 In A Trauma Unit. Impact of Lockdown and The Pressures on the Healthcare Provider
Authors: R. Gwynn, P. Panwalkar, K. Veravalli , M. Tofighi, R. Clement, A. Mofidi
Abstract:
The aim of this study was to access the impact of Covid-19 and lockdown on the incidence, injury pattern, and treatment of tibial plateau fractures in a combined rural and urban population in wales. Methods: Retrospective study was performed to identify tibial plateau fractures in 15-month period of Covid-19 lockdown 15-month period immediately before lockdown. Patient demographics, injury mechanism, injury severity (based on Schatzker classification), and associated injuries, treatment methods, and outcome of fractures in the Covid-19 period was studied. Results: The incidence oftibial plateau fracture was 9 per 100000 during Covid-19, and 8.5 per 100000, and both were similar to previous studies. The average age was 52, and female to male ratio was 1:1 in both control and study group. High energy injury was seen in only 20% of the patients and 35% in the control groups (2=12, p<0025). 14% of the covid-19 population sustained other injuries as opposed 16% in the control group(2=0.09, p>0.95). Lower severity isolated lateral condyle fracturesinjury (Schatzker 1-3) were seen in 40% of fractures this was 60% in the control populations. Higher bicondylar and shaft fractures (Schatzker 5-6) were seen in 60% of the Covid-19 group and 35% in the control groups(2=7.8, p<0.02). Treatment mode was not impacted by Covid-19. The complication rate was low in spite of higher number of complex fractures and the impact of covid-19 pandemic. Conclusion: The associated injuries were similar in spite of a significantly lower mechanism of injury. There were unexpectedly worst tibial plateau fracture based Schatzker classification in the Covid-19 period as compared to the control groups. This was especially relevant for medial condyle and shaft fractures. This was postulated to be caused by reduction in bone density caused by lack of vitamin D and reduction in activity. The treatment mode and outcome was not impacted by the impact of Covid-19 on care for tibial plateau fractures.Keywords: Covid-19, knee, tibial plateau fracture, trauma
Procedia PDF Downloads 1251476 Gas While Drilling (GWD) Classification in Betara Complex; An Effective Approachment to Optimize Future Candidate of Gumai Reservoir
Authors: I. Gusti Agung Aditya Surya Wibawa, Andri Syafriya, Beiruny Syam
Abstract:
Gumai Formation which acts as regional seal for Talang Akar Formation becomes one of the most prolific reservoir in South Sumatra Basin and the primary exploration target in this area. Marine conditions were eventually established during the continuation of transgression sequence leads an open marine facies deposition in Early Miocene. Marine clastic deposits where calcareous shales, claystone and siltstones interbedded with fine-grained calcareous and glauconitic sandstones are the domination of lithology which targeted as the hydrocarbon reservoir. All this time, the main objective of PetroChina’s exploration and production in Betara area is only from Lower Talang Akar Formation. Successful testing in some exploration wells which flowed gas & condensate from Gumai Formation, opened the opportunity to optimize new reservoir objective in Betara area. Limitation of conventional wireline logs data in Gumai interval is generating technical challenge in term of geological approach. A utilization of Gas While Drilling indicator initiated with the objective to determine the next Gumai reservoir candidate which capable to increase Jabung hydrocarbon discoveries. This paper describes how Gas While Drilling indicator is processed to generate potential and non-potential zone by cut-off analysis. Validation which performed by correlation and comparison with well logs, Drill Stem Test (DST), and Reservoir Performance Monitor (RPM) data succeed to observe Gumai reservoir in Betara Complex. After we integrated all of data, we are able to generate a Betara Complex potential map and overlaid with reservoir characterization distribution as a part of risk assessment in term of potential zone presence. Mud log utilization and geophysical data information successfully covered the geological challenges in this study.Keywords: Gumai, gas while drilling, classification, reservoir, potential
Procedia PDF Downloads 3551475 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors
Procedia PDF Downloads 3931474 Study of Land Use Changes around an Archaeological Site Using Satellite Imagery Analysis: A Case Study of Hathnora, Madhya Pradesh, India
Authors: Pranita Shivankar, Arun Suryawanshi, Prabodhachandra Deshmukh, S. V. C. Kameswara Rao
Abstract:
Many undesirable significant changes in landscapes and the regions in the vicinity of historically important structures occur as impacts due to anthropogenic activities over a period of time. A better understanding of such influences using recently developed satellite remote sensing techniques helps in planning the strategies for minimizing the negative impacts on the existing environment. In 1982, a fossilized hominid skull cap was discovered at a site located along the northern bank of the east-west flowing river Narmada in the village Hathnora. Close to the same site, the presence of Late Acheulian and Middle Palaeolithic tools have been discovered in the immediately overlying pebbly gravel, suggesting that the ‘Narmada skull’ may be from the Middle Pleistocene age. The reviews of recently carried out research studies relevant to hominid remains all over the world from Late Acheulian and Middle Palaeolithic sites suggest succession and contemporaneity of cultures there, enhancing the importance of Hathnora as a rare precious site. In this context, the maximum likelihood classification using digital interpretation techniques was carried out for this study area using the satellite imagery from Landsat ETM+ for the year 2006 and Landsat TM (OLI and TIRS) for the year 2016. The overall accuracy of Land Use Land Cover (LULC) classification of 2016 imagery was around 77.27% based on ground truth data. The significant reduction in the main river course and agricultural activities and increase in the built-up area observed in remote sensing data analysis are undoubtedly the outcome of human encroachments in the vicinity of the eminent heritage site.Keywords: cultural succession, digital interpretation, Hathnora, Homo Sapiens, Late Acheulian, Middle Palaeolithic
Procedia PDF Downloads 1721473 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System
Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi
Abstract:
The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources
Procedia PDF Downloads 4511472 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network
Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima
Abstract:
Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network
Procedia PDF Downloads 3301471 Complex Dynamics in a Model of Management of the Protected Areas
Authors: Paolo Russu
Abstract:
This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) due to interactions between visitors and the animals that live there. The PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park and the chance of witnessing the species living there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the regions and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as numerical examples demonstrate. Pontryagin's Maximum Principle was utilised to develop an optimal admission charge policy that maximised social gain and ecosystem conservation.Keywords: chaos, bifurcation points, dynamical model, optimal control
Procedia PDF Downloads 821470 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network
Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.Keywords: DSEP, fuzzy logic, energy model, WSN
Procedia PDF Downloads 2071469 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 1131468 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method
Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung
Abstract:
This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.Keywords: seismic, numerical analysis, FEM, weir, boundary condition
Procedia PDF Downloads 4521467 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam
Authors: Sahand Golmohammadi, Sana Hosseini Shirazi
Abstract:
Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel
Procedia PDF Downloads 731466 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).Keywords: neural computing, human machine interation, artificial general intelligence, decision processing
Procedia PDF Downloads 1251465 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery
Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox
Abstract:
Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification
Procedia PDF Downloads 1341464 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm
Authors: Ovidiu Domşa, Nicolae Bold
Abstract:
Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.Keywords: chromosome, genetic algorithm, subtree, test
Procedia PDF Downloads 3241463 Cooperative Sensing for Wireless Sensor Networks
Authors: Julien Romieux, Fabio Verdicchio
Abstract:
Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks
Procedia PDF Downloads 3901462 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake
Procedia PDF Downloads 1721461 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings
Authors: Marco Tulio C. Faria
Abstract:
Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent load-carrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steady-state and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.Keywords: elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method
Procedia PDF Downloads 4501460 Changing Emphases in Mental Health Research Methodology: Opportunities for Occupational Therapy
Authors: Jeffrey Chase
Abstract:
Historically the profession of Occupational Therapy was closely tied to the treatment of those suffering from mental illness; more recently, and especially in the U.S., the percentage of OTs identifying as working in the mental health area has declined significantly despite the estimate that by 2020 behavioral health disorders will surpass physical illnesses as the major cause of disability worldwide. In the U.S. less than 10% of OTs identify themselves as working with the mentally ill and/or practicing in mental health settings. Such a decline has implications for both those suffering from mental illness and the profession of Occupational Therapy. One reason cited for the decline of OT in mental health has been the limited research in the discipline addressing mental health practice. Despite significant advances in technology and growth in the field of neuroscience, major institutions and funding sources such as the National Institute of Mental Health (NIMH) have noted that research into the etiology and treatment of mental illness have met with limited success over the past 25 years. One major reason posited by NIMH is that research has been limited by how we classify individuals, that being mostly on what is observable. A new classification system being developed by NIMH, the Research Domain Criteria (RDoc), has the goal to look beyond just descriptors of disorders for common neural, genetic, and physiological characteristics that cut across multiple supposedly separate disorders. The hope is that by classifying individuals along RDoC measures that both reliability and validity will improve resulting in greater advances in the field. As a result of this change NIH and NIMH will prioritize research funding to those projects using the RDoC model. Multiple disciplines across many different setting will be required for RDoC or similar classification systems to be developed. During this shift in research methodology OT has an opportunity to reassert itself into the research and treatment of mental illness, both in developing new ways to more validly classify individuals, and to document the legitimacy of previously ill-defined and validated disorders such as sensory integration.Keywords: global mental health and neuroscience, research opportunities for ot, greater integration of ot in mental health research, research and funding opportunities, research domain criteria (rdoc)
Procedia PDF Downloads 2751459 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 831458 Outcome of Unilateral Retinoblastoma: A Ten Years Experience of Children's Cancer, Hospital Egypt
Authors: Ahmed Elhussein, Hossam El-Zomor, Adel Alieldin, Mahmoud A. Afifi, Abdullah Elhusseiny, Hala Taha, Amal Refaat, Soha Ahmed, Mohamed S. Zagloul
Abstract:
Background: A majority of children with retinoblastoma (60%) have a disease in one eye only (unilateral disease). This is a retrospective study to evaluate two different treatment modalities in those patients for saving their lives and vision. Methods: Four hundred and four patients were diagnosed with unilateral intraocular retinoblastoma at Children’s Cancer, Hospital Egypt (CCHE) through the period of July/2007 until December/2017. Management strategies included primary enucleation versus ocular salvage treatment. Results: Patients presented with mean age 24.5 months with range (1.2-154.3 months). According to the international retinoblastoma classification, Group D (n=172, 42%) was the most common, followed by group E (n=142, 35%), group C (n=63, 16%), and group B (n=27, 7%). All patients were alive at the end of the study except four patients who died, with 5-years overall survival 98.3% [CI, (96.5-100%)]. Patients presented with advanced disease and poor visual prognosis (n=241, 59.6%) underwent primary enucleation with 6 cycles adjuvant chemotherapy if they had high-risk features in the enucleated eye; only four patients out of 241 ended-up either with extraocular metastasis (n=3) or death (n=1). While systemic chemotherapy and focal therapy were the primary treatment for those who presented with favorable disease status and good visual prognosis (n=163, 40.4%); seventy-seven patients of them (47%) ended up with a pre-defined event (enucleation, EBRT, off protocol chemotherapy or 2ry malignancy). Ocular survival for patients received primary chemotherapy + focal therapy was [50.9% (CI, 43.5-59.6%)] at 3 years and [46.9% (CI,39.3-56%)] at 5 years. Comparison between upfront enucleation and primary chemotherapy for occurrence of extraocular metastasis revealed that there was no statistical difference between them except in group D (p value). While for occurrence of death, no statistical difference in all classification groups. Conclusion: In retinoblastoma, primary chemotherapy is a reasonable option and has a good probability for ocular salvage without increasing the risk of metastasis in comparison to upfront enucleation except in group D.Keywords: CCHE, chemotherapy, enucleation, retinoblastoma
Procedia PDF Downloads 1551457 Evaluation of the Efficacy of Basic Life Support Teaching in Second and Third Year Medical Students
Authors: Bianca W. O. Silva, Adriana C. M. Andrade, Gustavo C. M. Lucena, Virna M. S. Lima
Abstract:
Introduction: Basic life support (BLS) involves the immediate recognition of cardiopulmonary arrest. Each year, 359.400 and 275.000 individuals with cardiac arrest are attended in emergency departments in USA and Europe. Brazilian data shows that 200.000 cardiac arrests occur every year, and half of them out of the hospital. Medical schools around the world teach BLS in the first years of the course, but studies show that there is a decline of the knowledge as the years go by, affecting the chain of survival. The objective was to analyze the knowledge of medical students about BLS and the retention of this learning throughout the course. Methods: This study included 150 students who were at the second and third year of a medical school in Salvador, Bahia, Brazil. The instrument of data collection was a structured questionnaire composed of 20 questions based on the 2015 American Heart Association guideline. The Pearson Chi-square test was used in order to study the association between previous training, sex and semester with the degree of knowledge of the students. The Kruskal-Wallis test was used to evaluate the different yields obtained between the various semesters. The number of correct answers was described by average and quartiles. Results: Regarding the degree of knowledge, 19.6% of the female students reached the optimal classification, a better outcome than the achieved by the male participants. Of those with previous training, 33.33% were classified as good and optimal, none of the students reached the optimal classification and only 2.2% of them were classified as bad (those who did not have 52.6% of correct answers). The analysis of the degree of knowledge related to each semester revealed that the 5th semester had the highest outcome: 30.5%. However, the acquaintance presented by the semesters was generally unsatisfactory, since 50% of the students, or more, demonstrated knowledge levels classified as bad or regular. When confronting the different semesters and the achieved scores, the value of p was 0.831. Conclusion: It is important to focus on the training of medical professionals that are capable of facing emergency situations, improving the systematization of care, and thereby increasing the victims' possibility of survival.Keywords: basic life support, cardiopulmonary ressucitacion, education, medical students
Procedia PDF Downloads 1861456 Lymphatic Microvessel Density as a Prognostic Factor in Endometrial Carcinoma
Authors: Noha E. Hassan
Abstract:
Little is known regarding the influence of lymphatic microvessel density (LMVD) on prognosis in endometrial cancer. Prospective study was done in tertiary education and research hospital (Shatby Alexandria university hospital) on sixty patients presented with endometrial carcinoma underwent complete surgical staging. Our aim was to assess the intratumoral and peritumoral Lymphatic microvessel density (LMVD) of endometrial carcinomas identified by immunohistochemical staining using an antibody against podoplanin and to investigate their association with classical clinicopathological factors and prognosis. The result shows that high LMVD was associated with endometroid type of tumors, lesser myometrial, adnexal, cervical and peritoneal infiltration, lower tumor grade and stage and lesser recurrent cases. There is lower lymph node involvement among cases with high intratumoral LMVD and cases of high peritumoral LMVD; that reach statistical significance only among cases of high intratumoral LMVD. No association was seen between LMVD and lymphovascular space invasion. On the other hand, low LMVD was associated with poor outcome. Finally, we can conclude that increased LMVD is associated with favorable prognosis in endometrial cancer patients.Keywords: endometrial carcinoma, lymphatic microvessel, microvessel density, prognosis
Procedia PDF Downloads 141