Search results for: legal judgment prediction
2884 Necro-Power, Paramilitarism, and Sovereignty: An Interpretation of Colombian Paramilitarism as Symptom of the Formation Process of the (Neo)Liberal Democratic State
Authors: Julian David Rios Acuna
Abstract:
This paper seeks to argue that the phenomenon of ‘paramilitarism’ in Colombia exhibits the role of violence as constitutive of the political process of state formation in the country. In order to do this, it takes as its point of departure a landmark moment in the long history of private armies known as the ‘paramilitary’ in Colombia. In 2001, paramilitary commanders, politicians, and members of the military and other branches of state power singed what is known as the ‘Pact of Ralito.’ In this pact, the paramilitary appropriated constitutional and legal language. The paper argues that this appropriation shows that the paramilitary and the state express the same claim to sovereign power and therefore have the same foundation. More precisely, paramilitary power shows itself to base its power on the same foundation as the legal order, namely, extreme forms of violence where death is generative of power. In this sense, the paper shows how, by sharing its foundation, Colombian paramilitarism exhibits that state power in Colombia can be characterized as necro-power as Achille Mbembe understands it. The paper argues that paramilitarism shows state power as necro-power by constituting itself as a symptom understood, following Zizek, as that which both shows and overthrows its own foundation. In this way, paramilitarism shows the foundation of the state, thereby reconfiguring this very state. This reconfiguration, explicitly based on necro-power, the paper concludes, transforms the state into a form more appropriate to the political demands of neo-liberalism. By exhibiting its foundation in necro-power through paramilitarism, the Colombian State turns from a liberal into a (neo)liberal democracy.Keywords: necro-power, necropolitics, paramilitarism in Colombia, state formation, state power, sovereign power
Procedia PDF Downloads 1342883 Corporate Collapses and (Legal) Ethics
Authors: Elizabeth Snyman-Van Deventer
Abstract:
Numerous corporate scandals, which included investment scams, corporate malfeasance, unethical conduct and conflicts of interest, contributed to the collapse of WorldCom, Global Crossing, Xerox, Tyco, Enron, Sprint, AbbVie and Imclone and led to alarmed investors abandoning public securities markets and the tumbling of U.S stock markets. These companies suffered significant financial losses due to substantial and fraudulent misstatements and other illegal, corrupt or unethical practices. Executives were convicted of fraud and sentenced to prison. The corporate financial scandals, governance failures, and the ensuing public outcries led to mandatory legislation, e.g. the Sarbanes-Oxley Act in the USA. In European corporate scandals such as Parmalat, Royal Dutch Ahold, Vivendi, Adecco and Elan, the boards missed financial misrepresentations. In South Africa, Steinhoff is the most well-known example of corporate collapse, but now we can also add Tongaat Hulett. It seems as if fraud and corruption may be the major sources of these corporate collapses. In most instances, there is either the active involvement of the directors and managers in these fraudulent or corrupt practices, or there is a negligent or even intentional failure to act by directors to prevent these activities. However, besides directors and managers, auditors and lawyers failed in most of these companies to fulfil their professional duties. In most of these major collapses, the ethics of especially auditors and directors could be questioned. This paper will first provide a brief overview of corporate collapses. Secondly, the reasons for these collapses, with a focus on unethical conduct, will be discussed.Keywords: professional duties, corporate collapses, ethical conduct, legal ethics, directors, auditors
Procedia PDF Downloads 642882 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty
Authors: Christoph Ostermair
Abstract:
We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory
Procedia PDF Downloads 2012881 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4162880 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka
Authors: Y. Rathiranee, D. M. Semasinghe
Abstract:
This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro-finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have a positive correlation with women empowerment as well as significant values at 5 percent level.Keywords: influencing factors, micro finance, rural women, women empowerment
Procedia PDF Downloads 4742879 The Role of the Accused’s Attorney in the Criminal Justice System of Iran, Mashhad 2014
Authors: Mahdi Karimi
Abstract:
One of the most basic standards of fair trial is the right to defense, hire an attorney and its presence in the hearing stages. On the one hand, based on the reason and justice, as the legal issues, particularly criminal affairs, become complicated, the accused must benefit from an attorney in the court in order to defend itself which requires legal knowledge. On the other hand, as the judicial system has jurists such as investigation judges at its disposal, the accused must enjoy the same right to defend itself and reject allegations so that the balance is maintained between the litigating parties based on the principle of "equality of arms". The right to adequate time and facilities for defense is cited among the principles and rights relevant to the proceedings in international regulations such as the International Covenant on Civil and Political Rights. The innovations made in the Code of Criminal Procedure in 2013 guaranteed the presence of the accused’s attorney in the proceedings. The present study aims at assessing the result of the aforementioned guarantee in practice and made attempts to investigate the effect of the presence of accused’s attorney on reducing the punishment by asking the question and addressing the statistical population of this study including 48 judges of lower courts and courts of appeal. It seems that in despite of guarantees provided in the new Code of Criminal Procedure, Iran's penal system, does not tolerate the presence of an attorney in practice.Keywords: defense attorney, equality of arms, fair trial, reducing the penalty, right to defense
Procedia PDF Downloads 3362878 The Dark Side of the Fight against Organised Crime
Authors: Ana M. Prieto del Pino
Abstract:
As is well known, UN Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances (1988) was a landmark regarding the seizure of proceeds of crime. Depriving criminals of the profits from their activity became a priority at an international level in the fight against organised crime. Enabling confiscation of proceeds of illicit traffic in narcotic drugs and psychotropic substances, criminalising money laundering and confiscating the proceeds thereof are the three measures taken in order to achieve that purpose. The beginning of 21st century brought the declaration of war on corruption and on the illicit enjoyment of the profits thereof onto the international scene. According to the UN Convention against Transnational Organised Crime (2000), States Parties should adopt the necessary measures to enable the confiscation of proceeds of crime derived from offences (or property of equivalent value) and property, equipment and other instrumentalities used in offences covered by that Convention. The UN Convention against Corruption (2003) states asset recovery explicitly as a fundamental principle and sets forth measures aiming at the direct recovery of property through international cooperation in confiscation. Furthermore, European legislation has made many significant strides forward in less than twenty years concerning money laundering, confiscation, and asset recovery. Crime does not pay, let there be no doubt about it. Nevertheless, we must be very careful not to sing out of tune with individual rights and legal guarantees. On the one hand, innocent individuals and businesses must be protected, since they should not pay for the guilty ones’ faults. On the other hand, the rule of law must be preserved and not be tossed aside regarding those who have carried out criminal activities. An in-depth analysis of judicial decisions on money laundering and confiscation of proceeds of crime issued by European national courts and by the European Court of Human Rights in the last decade has been carried out from a human rights, legal guarantees and criminal law basic principles’ perspective. The undertaken study has revealed the violation of the right to property, of the proportionality principle legal and the infringement of basic principles of states’ domestic substantive and procedural criminal law systems. The most relevant ones have to do with the punishment of money laundering committed through negligence, non-conviction based confiscation and a too-far reaching interpretation of the notion of ‘proceeds of crime’. Almost everything in life has a bright and a dark side. Confiscation of criminal proceeds and asset recovery are not an exception to this rule.Keywords: confiscation, human rights, money laundering, organized crime
Procedia PDF Downloads 1392877 Verification of Simulated Accumulated Precipitation
Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze
Abstract:
Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting
Procedia PDF Downloads 1512876 The Effect of the Cultural Constraint on the Reform of Corporate Governance: The Observation of Taiwan's Efforts to Transform Its Corporate Governance
Authors: Yuanyi (Richard) Fang
Abstract:
Under the theory of La Porta, Lopez-de-Silanes, Shleifer, and Vishny, if a country can increase its legal protections for minority shareholders, the country can develop an ideal securities market that only arises under the dispersed ownership corporate governance. However, the path-dependence scholarship, such as Lucian Arye Bebchuk and Mark J. Roe, presented a different view with LLS&V. They pointed out that the initial framework of the ownership structure and traditional culture will prevent the change of the corporate governance structure through legal reform. This paper contends that traditional culture factors as an important aspect when forming the corporate governance structure. However, it is not impossible for the government to change its traditional corporate governance structure and traditional culture because the culture does not remain intact. Culture evolves with time. The occurrence of the important events will affect the people’s psychological process. The psychological process affects the evolution of culture. The new cultural norms can help defeat the force of the traditional culture and the resistance from the initial corporate ownership structure. Using Taiwan as an example, through analyzing the historical background, related corporate rules and the reactions of adoption new rules from the media, this paper try to show that Taiwan’s culture norms do not remain intact and have changed with time. It further provides that the culture is not always the hurdle for the adoption of the dispersed ownership corporate governance structure as the culture can change. A new culture can provide strong support for the adoption of the new corporate governance structure.Keywords: LLS&V theory, corporate governance, culture, path–dependent theory
Procedia PDF Downloads 4762875 Impact of Regulation on Trading in Financial Derivatives in Europe
Authors: H. Florianová, J. Nešleha
Abstract:
Financial derivatives are considered to be risky investment instruments which could possibly bring another financial crisis. As prevention, European Union and its member states have released new legal acts adjusting this area of law in recent years. There have been several cases in history of capital markets worldwide where it was shown that legislature may affect behavior of subjects on capital markets. In our paper we analyze main events on selected European stock exchanges in order to apply them on three chosen markets - Czech capital market represented by Prague Stock Exchange, German capital market represented by Deutsche Börse and Polish capital market represented by Warsaw Stock Exchange. We follow time series of development of the sum of listed derivatives on these three stock exchanges in order to evaluate popularity of those exchanges. Afterwards we compare newly listed derivatives in relation to the speed of development of these exchanges. We also make a comparison between trends in derivatives and shares development. We explain how a legal regulation may affect situation on capital markets. If the regulation is too strict, potential investors or traders are not willing to undertake it and move to other markets. On the other hand, if the regulation is too vague, trading scandals occur and the market is not reliable from the prospect of potential investors or issuers. We see that making the regulation stricter usually discourages subjects to stay on the market immediately although making the regulation vaguer to interest more subjects is usually much slower process.Keywords: capital markets, financial derivatives, investors' behavior, regulation
Procedia PDF Downloads 2702874 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 4902873 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units
Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz
Abstract:
Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting
Procedia PDF Downloads 2242872 Beneficiary Dimensions of Sport Event: Host Community Perceptions
Authors: Vajiheh Javani
Abstract:
Hosting sport event result in both economic and socio-psychological impacts on host communities. Economic impacts, which are considered by many scholars and the social impacts of tourism based on hosting sports events have also been somehow investigated. But, investigating perceived social impacts based on host community perceptions has been paid not with little attention enough. Therefore, this study aims to study the beneficiary social impact of hosting sport event from residents’ perceptions. The participations for this research were 50 residents of Tabriz city who were recruited by judgment sampling method. focused group interviews were used for gathering the data. Then thematic analysis was utilized for interview analysis. Extracted perceived beneficiary social impacts include (1) economic benefits; (2) community pride; (3) community development. This study highlighted the perceived social beneficiary impacts and could contribute to a better understanding of how local residents of the studied community view the impacts associated with a sport event.Keywords: socio-psychological impacts, sport event, community development, hosting
Procedia PDF Downloads 772871 Toward Sustainable Solutions: Indonesia's Humanitarian Approach to the Rohingya Refugee Crisis
Authors: Hengki
Abstract:
This study explores Indonesia's approach to addressing the Rohingya refugee crisis, emphasizing its efforts to balance humanitarian principles with national and regional challenges. Employing a qualitative, normative legal analysis, the research integrates data from government reports, ASEAN and UN documents, and prior studies. Indonesia's strategies include facilitating temporary shelter, promoting education for refugee children, and advancing international cooperation through partnerships with United Nations High Commissioner for Refugees (UNHCR) and International Organization for Migration (IOM). While not a signatory to the 1951 Refugee Convention, Indonesia adheres to the principle of non-refoulement and seeks to address the crisis through its Presidential Regulation No. 125/2016, quiet diplomacy, and ASEAN-led initiatives. Despite these efforts, challenges persist, such as limited legal frameworks, coordination barriers between government levels, and slow regional collaboration. The study underscores the urgency of developing sustainable solutions, including revising domestic policies, enhancing ASEAN's collective response, and aligning with international standards. By addressing these challenges, Indonesia can not only uphold refugee rights but also promote regional stability and human rights values. This research contributes to understanding the complexities of refugee management in Indonesia and offers a foundation for future studies aimed at refining policies and strategies.Keywords: rohingya refugees, indonesia, humanitarian aid, international collaboration, refugee law
Procedia PDF Downloads 42870 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 952869 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 992868 Legal Doctrine on Rylands v. Fletcher: One more time on Feasibility of a General Clause of Strict Liability in the UK
Authors: Maria Lubomira Kubica
Abstract:
The paper reveals the birth and evolution of the British precedent Rylands v. Fletcher that, once adopted on the other side of the Ocean (in United States), gave rise to a general clause of liability for abnormally dangerous activities recognized by the §20 of the American Restatements of the Law Third, Liability for Physical and Emotional Harm. The main goal of the paper was to analyze the development of the legal doctrine and of the case law posterior to the precedent together with the intent of the British judicature to leapfrog from the traditional rule contained in Rylands v. Fletcher to a general clause similar to that introduced in the United States and recently also on the European level. As it is well known, within the scope of tort law two different initiatives compete with the aim of harmonizing the European laws: European Group on Tort Law with its Principles of European Tort Law (hereinafter PETL) in which article 5:101 sets forth a general clause for strict liability for abnormally dangerous activities and Study Group on European Civil Code with its Common Frame of Reference (CFR) which promotes rather ad hoc model of listing out determined cases of strict liability. Very narrow application scope of the art. 5:101 PETL, restricted only to abnormally dangerous activities, stays in opposition to very broad spectrum of strict liability cases governed by the CFR. The former is a perfect example of a general clause that offers a minimum and basic standard, possibly acceptable also in those countries in which, like in the United Kingdom, this regime of liability is completely marginalized.Keywords: abnormally dangerous activities, general clause, Rylands v. Fletcher, strict liability
Procedia PDF Downloads 2012867 Analyzing the Prospects and Challenges in Implementing the Legal Framework for Competition Regulation in Nigeria
Authors: Oluchukwu P. Obioma, Amarachi R. Dike
Abstract:
Competition law promotes market competition by regulating anti-competitive conduct by undertakings. There is a need for a third party to regulate the market for efficiency and supervision, since, if the market is left unchecked, it may be skewed against the consumers and the economy. Competition law is geared towards the protection of consumers from economic exploitation. It is the duty of every rational government to optimally manage its economic system by employing the best regulatory practices over the market to ensure it functions effectively and efficiently. The Nigerian government has done this by enacting the Federal Competition and Consumer Protection Act, 2018 (FCCPA). This is a comprehensive legal framework with the objective of governing competition issues in Nigeria. Prior to its enactment, the competition law regime in Nigeria was grossly inadequate despite Nigeria being the biggest economy in Africa. This latest legislation has become a bold step in the right direction. This study will use the doctrinal methodology in analyzing the FCCPA, 2018 in order to discover the extent to which the Act will guard against anti-competitive practices and promote competitive markets for the benefit of the Nigerian economy and consumers. The study finds that although the FCCPA, 2018 provides for the regulation of competition in Nigeria, there is a need to effectively tackle the challenges to the implementation of the Act and the development of anti-trust jurisprudence in Nigeria. This study concludes that incisive implementation of competition law in Nigeria will help protect consumers and create a conducive environment for economic growth, development, and protection of consumers from obnoxious competition practices.Keywords: anti-competitive practices, competition law, competition regulation, consumer protection.
Procedia PDF Downloads 1812866 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 1262865 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites
Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler
Abstract:
Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.Keywords: failure, strength, stress concentration, unidirectional composites
Procedia PDF Downloads 1562864 Unaccompanied Children: An Overview on National and European Law
Authors: Cinzia Valente
Abstract:
Over the last few years, national legislators have been forced to deal with social changes that have had important repercussions in family law and children’s law. This growing focus on minors has provoked important reforms, specifically on issues relating to the welfare and protection of children. My presentation focuses on the issue of migrant children in particular I refer to unaccompanied children, or ‘children on the move’, or separate children or any other term defining migrant minors who cross national borders seeking protection or better opportunities. They arrive often illegally, on the European territory without a responsible adult who take care of them. There is a common assumption that migrants are running away from conflicts, poverty and human rights abuse and they arrive in a foreign country hoping a better life; children without persons who takes care of them encounter some difficulties in their integration in the host country. The migration flows recorded in recent decades towards EU countries, and Italy in particular, have imposed an intense pressure to modernize institutions, services and specific legal frameworks, with the aim of responding adequately to the needs of foreign individuals, as well as ensuring a good level of living standards and facilitating integration, especially for migrant children. The object of my paper is the analysis of the Italian rules, practices and services existing in favor of unaccompanied children (foster care, reunification, acquisition of citizenship and other) in comparison with other European legal systems on the same thematic with a comparative method. Highlighting European standards to find common principles for the best solution to children's problems is the conclusive aim of my presentation.Keywords: Children , Family Law, Migration , Uniform Law
Procedia PDF Downloads 1422863 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 1322862 Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison
Authors: Po-Fang Hsu, Chiching Wei
Abstract:
In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing the whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In the beginning, we apply a document layout analysis that combines traditional and modern technics to segment layouts in blocks of various types appropriately. Then we transform this issue into a problem of layout graph matching with textual awareness. Regarding graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our neural graph approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.Keywords: document comparison, graph matching, graph neural network, modification similarity, multi-modal
Procedia PDF Downloads 1802861 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 5132860 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating
Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis
Procedia PDF Downloads 3422859 A Comparative Analysis of the Factors Determining Improvement and Effectiveness of Mediation in Family Matters Regarding Child Protection in Australia and Poland
Authors: Beata Anna Bronowicka
Abstract:
Purpose The purpose of this paper is to improve effectiveness of mediation in family matters regarding child protection in Australia and Poland. Design/methodology/approach the methodological approach is phenomenology. Two phenomenological methods of data collection were used in this research 1/ a doctrinal research 2/an interview. The doctrinal research forms the basis for obtaining information on mediation, the date of introduction of this alternative dispute resolution method to the Australian and Polish legal systems. No less important were the analysis of the legislation and legal doctrine in the field of mediation in family matters, especially child protection. In the second method, the data was collected by semi-structured interview. The collected data was translated from Polish to English and analysed using software program. Findings- The rights of children in the context of mediation in Australia and Poland differ from the recommendations of the UN Committee on the Rights of the Child, which require that children be included in all matters that concern them. It is the room for improvement in the mediation process by increasing child rights in mediation between parents in matters related to children. Children should have the right to express their opinion similarly to the case in the court process. The challenge with mediation is also better understanding the role of professionals in mediation as lawyers, mediators. Originality/value-The research is anticipated to be of particular benefit to parents, society as whole, and professionals working in mediation. These results may also be helpful during further legislative initiatives in this area.Keywords: mediation, family law, children's rights, australian and polish family law
Procedia PDF Downloads 792858 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 952857 Soft Computing Approach for Diagnosis of Lassa Fever
Authors: Roseline Oghogho Osaseri, Osaseri E. I.
Abstract:
Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.Keywords: anfis, lassa fever, medical diagnosis, soft computing
Procedia PDF Downloads 2712856 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network
Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang
Abstract:
Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid
Procedia PDF Downloads 2842855 Seaworthiness and Liability Risks Involving Technology and Cybersecurity in Transport and Logistics
Authors: Eugene Wong, Felix Chan, Linsey Chen, Joey Cheung
Abstract:
The widespread use of technologies and cyber/digital means for complex maritime operations have led to a sharp rise in global cyber-attacks. They have generated an increasing number of liability disputes, insurance claims, and legal proceedings. An array of antiquated case law, regulations, international conventions, and obsolete contractual clauses drafted in the pre-technology era have become grossly inadequate in addressing the contemporary challenges. This paper offers a critique of the ambiguity of cybersecurity liabilities under the obligation of seaworthiness entailed in the Hague-Visby Rules, which apply either by law in a large number of jurisdictions or by express incorporation into the shipping documents. This paper also evaluates the legal and technological criteria for assessing whether a vessel is properly equipped with the latest offshore technologies for navigation and cargo delivery operations. Examples include computer applications, networks and servers, enterprise systems, global positioning systems, and data centers. A critical analysis of the carriers’ obligations to exercise due diligence in preventing or mitigating cyber-attacks is also conducted in this paper. It is hoped that the present study will offer original and crucial insights to policymakers, regulators, carriers, cargo interests, and insurance underwriters closely involved in dispute prevention and resolution arising from cybersecurity liabilities.Keywords: seaworthiness, cybersecurity, liabilities, risks, maritime, transport
Procedia PDF Downloads 135