Search results for: field exposure
8966 Variations of Testing Concrete Mechanical Properties by European Standard and American Code
Authors: Ahmed M. Seyam, Rita Nemes, Salem Georges Nehme
Abstract:
Europe and the United States have a worldwide significance in the field of concrete control and construction; according to that, a lot of countries adopted their standards and regulations in the concrete field, as proof of the Europe and US strong standards and due to lack of own regulations. The main controlled property of concrete are the compressive strength, flexure tensile strength, and modulus of elasticity as it relates both to its bearing capacity and to the durability of the elements built with it, so in this paper, ASTM standard and EN standards method of testing those properties were put under the microscope to compare the variations between them.Keywords: concrete, ASTM, EU standards, compressive strength, flexural strength, modulus of elasticity
Procedia PDF Downloads 898965 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space
Authors: Amir Hadi Ziaie
Abstract:
In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.Keywords: gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics
Procedia PDF Downloads 3428964 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis
Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya
Abstract:
The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.Keywords: failure, mechanical properties, microstructure, Raman spectroscopy
Procedia PDF Downloads 1538963 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles
Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic
Abstract:
Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D
Procedia PDF Downloads 1388962 The Intersection of Art and Technology: Innovations in Visual Communication Design
Authors: Sareh Enjavi
Abstract:
In recent years, the field of visual communication design has seen a significant shift in the way that art is created and consumed, with the advent of new technologies like virtual reality, augmented reality, and artificial intelligence. This paper explores the ways in which technology is changing the landscape of visual communication design, and how designers are incorporating new technological tools into their artistic practices. The primary objective of this research paper is to investigate the ways in which technology is influencing the creative process of designers and artists in the field of visual communication design. The paper also aims to examine the challenges and limitations that arise from the intersection of art and technology in visual communication design, and to identify strategies for overcoming these challenges. Drawing on examples from a range of fields, including advertising, fine art, and digital media, this paper highlights the exciting innovations that are emerging as artists and designers use technology to push the boundaries of traditional artistic expression. The paper argues that embracing technological innovation is essential for the continued evolution of visual communication design. By exploring the intersection of art and technology, designers can create new and exciting visual experiences that engage and inspire audiences in new ways. The research also contributes to the theoretical and methodological understanding of the intersection of art and technology, a topic that has gained significant attention in recent years. Ultimately, this paper emphasizes the importance of embracing innovation and experimentation in the field of visual communication design, and highlights the exciting innovations that are emerging as a result of the intersection of art and technology, and emphasizes the importance of embracing innovation and experimentation in the field of visual communication design.Keywords: visual communication design, art and technology, virtual reality, interactive art, creative process
Procedia PDF Downloads 1178961 News Reading Practices: Traditional Media versus New Media
Authors: Nuran Öze
Abstract:
People always want to be aware of what is happening around them. The nature of man constantly triggers the need for gathering information because of curiosity. The media has emerged to save people the need for information. It is known that the media has changed with the technological developments over time, diversified and, people's information needs are provided in different ways. Today, the Internet has become an integral part of everyday life. The invasion of the Internet into everyday life practices at this level affects every aspect of life. These effects cause people to change their life practices. Technological developments have always influenced of people, the way they reach information. Looking at the history of the media, the breaking point about the dissemination of information is seen as the invention of the machine of the printing press. This adventure that started with written media has now become a multi-dimensional structure. Written, audio, visual media has now changed shape with new technologies. Especially emerging of the internet to everyday life, of course, has effects on media field. 'New media' has appeared which contains most of traditional media features in its'. While in the one hand this transformation enables captures a harmony between traditional and new media, on the other hand, new media and traditional media are rivaling each other. The purpose of this study is to examine the problematic relationship between traditional media and new media through the news reading practices of individuals. This study can be evaluated as a kind of media sociology. To reach this aim, two different field researches will be done besides literature review. The research will be conducted in Northern Cyprus. Northern Cyprus Northern Cyprus is located in the Mediterranean Sea. North Cyprus is a country which is not recognized by any country except Turkey. Despite this, takes its share from all technological developments take place in the world. One of the field researches will consist of the questionnaires to be applied on media readers' news reading practices. This survey will be conducted in a social media environment. The second field survey will be conducted in the form of interviews with general editorials or news directors in traditional media. In the second field survey, in-depth interview method will be applied. As a result of these investigations, supporting sides between the new media and the traditional media and directions which contrast with each other will be revealed. In addition to that, it will try to understand the attitudes and perceptions of readers about the traditional media and the new media in this study.Keywords: new media, news, North Cyprus, traditional media
Procedia PDF Downloads 2248960 Developing the Morphological Field of Problem Context to Assist Multi-Methodology in Operations Research
Authors: Mahnaz Hosseinzadeh, Mohammad Reza Mehregan
Abstract:
In this paper, we have developed a morphological field to assist multi- methodology (combining methodologies together in whole or part) in Operations Research (OR) for the problem contexts in Iranian organizations. So, we have attempted to identify some dimensions for problem context according to Iranian organizational problems. Then, a general morphological program is designed which helps the OR practitioner to determine the suitable OR methodology as output for any configuration of conditions in a problem context as input and to reveal the fields necessary to be improved in OR. Applying such a program would have interesting results for OR practitioners.Keywords: hard, soft and emancipatory operations research, General Morphological Analysis (GMA), multi-methodology, problem context
Procedia PDF Downloads 2978959 Semantics of the Word “Nas” in the Verse 24 of Surah Al-Baqarah Based on Izutsus’ Semantic Field Theory
Authors: Seyedeh Khadijeh. Mirbazel, Masoumeh Arjmandi
Abstract:
Semantics is a linguistic approach and a scientific stream, and like all scientific streams, it is dynamic. The study of meaning is carried out in the broad semantic collections of words that form the discourse. In other words, meaning is not something that can be found in a word; rather, the formation of meaning is a process that takes place in a discourse as a whole. One of the contemporary semantic theories is Izutsu's Semantic Field Theory. According to this theory, the discovery of meaning depends on the function of words and takes place within the context of language. The purpose of this research is to identify the meaning of the word "Nas" in the discourse of verse 24 of Surah Al-Baqarah, which introduces "Nas" as the firewood of hell, but the translators have translated it as "people". The present research has investigated the semantic structure of the word "Nas" using the aforementioned theory through the descriptive-analytical method. In the process of investigation, by matching the semantic fields of the Quranic word "Nas", this research came to the conclusion that "Nas" implies those persons who have forgotten God and His covenant in believing in His Oneness. For this reason, God called them "Nas (the forgetful)" - the imperfect participle of the noun /næsiwoɔn/ in single trinity of Arabic language, which means “to forget”. Therefore, the intended meaning of "Nas" in the verses that have the word "Nas" is not equivalent to "People" which is a general noun.Keywords: Nas, people, semantics, semantic field theory.
Procedia PDF Downloads 1878958 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran
Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian
Abstract:
Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters
Procedia PDF Downloads 1928957 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities
Authors: Nacer Hamza
Abstract:
Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.Keywords: norms, radon concentration, produced water, heavy metals
Procedia PDF Downloads 1468956 Trauma-Informed Applied Theatre: Using Performance to Connect with Mental Dysfunction Using Physical Embodiment Begins with Ancient Civilizations
Authors: Stephanie Elizabeth Talder
Abstract:
Art therapy is a field that is growing exponentially with new groundbreaking discoveries that allow for embodying trauma and mental healing. Applied theatre and performance is a continuously growing and developing field that can help people who are struggling to work through traumatic experiences plaguing their life. By using performance, there is an ability to target sensitive topics in a manner that does not lead to re-traumatization. The use of theatre as a healing agent has been going on for centuries, with clear applications beginning in Greek theatre and tragedy. When working with complex mental illness, issues such as PTSD, anxiety, and depression can be managed and worked through. A central component of drama therapy is the connection to community and self. The ability to connect mind-body to stories as well as to other people allows for healing to occur. There is the opportunity for healing through emotional catharsis and community building. Applied theatre in connection to the medical field can allow for there to be a meaningful impact made on mental health. Though there is still a significant amount of progress to be made within the stigmatization of mental health problems, bringing in a varying option that allows for there to be movement and community building possesses a strong ability to impact people in a positive way.Keywords: applied theatre, drama therapy, art therapy, performance, theatre
Procedia PDF Downloads 858955 Pharmaceutical Innovation in Jordan: KAP Analysis
Authors: Abdel Qader Al Bawab, Mohannad Odeh, Rami Amer
Abstract:
Recently, there has been an increasing interest in innovative business development. Nevertheless, in the pharmacy practice field, there seems to be a gap in perceptions, attitudes, and knowledge about innovation between practicing pharmacists and academia. This study explores this gap and aspects of pharmaceutical innovation in Jordan, comparing pharmacists and last-year pharmacy students. A validated (r2 = 0.74) and reliable (Pearson’s r = 0.88) online questionnaire was designed to assess and compare knowledge, attitude, and perceptions about pharmaceutical innovation. A total of 397 participants (215 pharmacy students and 182 pharmaceutical professionals) responded. Compared with 50% of the pharmacists, only 32.1% of the students claimed that they knew the differences between pharmaceutical innovation, discovery, invention, and entrepreneurship [x2 (2) = 14.238, p = 0.001; Cramer’s V = 0.189]. Pharmacists demonstrated a higher level of trust in the innovative website design for their institution compared with students (25.3% vs. 16.3%, p < 0.001, Cramer’s V = 0.327). However, 60% of the students did not know the innovative design standards for websites, while the corresponding percentage was 37% for the pharmacists (p < 0.001; Cramer’s V = 0.327). The majority of the students were interested in pharmaceutical innovation (81.9%). Unfortunately, 76.3% never studied innovation in their pharmacy curricula. Similarly, most pharmacists (76.4%) considered adopting innovation, but only 30% had a concrete plan. For the field where pharmacists aim to innovate in the next 5 years, new pharmaceutical services were the dominant field (34.6%). Despite a positive attitude and perception, pharmacists and pharmacy students expressed poor knowledge about innovation. Policies to enhance awareness about innovation and professional educational tools should be implemented.Keywords: pharmacy, innovation, knowledge, attitude, practice
Procedia PDF Downloads 858954 Field Deployment of Corrosion Inhibitor Developed for Sour Oil and Gas Carbon Steel Pipelines
Authors: Jeremy Moloney
Abstract:
A major oil and gas operator in western Canada producing approximately 50,000 BOE per day of sour fluids was experiencing increased water production along with decreased oil production over several years. The higher water volumes being produced meant an increase in the operator’s incumbent corrosion inhibitor (CI) chemical requirements but with reduced oil production revenues. Thus, a cost-effective corrosion inhibitor solution was sought to deliver enhanced corrosion mitigation of the carbon steel pipeline infrastructure but at reduced chemical injection dose rates. This paper presents the laboratory work conducted on the development of a corrosion inhibitor under the operator’s simulated sour operating conditions and then subsequent field testing of the product. The new CI not only provided extremely good levels of general and localized corrosion inhibition and outperformed the incumbent CI under the laboratory test conditions but did so at vastly lower concentrations. In turn, the novel CI product facilitated field chemical injection rates to be optimized and reduced by 40% compared with the incumbent whilst maintaining superior corrosion protection resulting in significant cost savings and associated sustainability benefits for the operator.Keywords: carbon steel, sour gas, hydrogen sulphide, localized corrosion, pitting, corrosion inhibitor
Procedia PDF Downloads 838953 Use of Metamaterials Structures to Reduce the SAR in the Human Head
Authors: Hafawa Messaoudi, Taoufik Aguili
Abstract:
Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions.Keywords: EBG, HIS, metamaterials, SAR reduction
Procedia PDF Downloads 5238952 Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images
Authors: Bo Wang
Abstract:
This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future.Keywords: remote sensing retrieve, PM 2.5, GF-1, aerosol optical depth
Procedia PDF Downloads 2438951 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method
Procedia PDF Downloads 4038950 Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors
Authors: S. Mohammadzamani, B. Kordi
Abstract:
Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm.Keywords: electric field measurement, impulse radiating antenna, switched oscillator, wireless impulse generator
Procedia PDF Downloads 1808949 The Beam Expansion Method, A Simplified and Efficient Approach of Field Propagation and Resonators Modes Study
Authors: Zaia Derrar Kaddour
Abstract:
The study of a beam throughout an optical path is generally achieved by means of diffraction integral. Unfortunately, in some problems, this tool turns out to be not very friendly and hard to implement. Instead, the beam expansion method for computing field profiles appears to be an interesting alternative. The beam expansion method consists of expanding the field pattern as a series expansion in a set of orthogonal functions. Propagating each individual component through a circuit and adding up the derived elements leads easily to the result. The problem is then reduced to finding how the expansion coefficients change in a circuit. The beam expansion method requires a systematic study of each type of optical element that can be met in the considered optical path. In this work, we analyze the following fundamental elements: first order optical systems, hard apertures and waveguides. We show that the former element type is completely defined thanks to the Gouy phase shift expression we provide and the latters require a suitable mode conversion. For endorsing the usefulness and relevance of the beam expansion approach, we show here some of its applications such as the treatment of the thermal lens effect and the study of unstable resonators.Keywords: gouy phase shift, modes, optical resonators, unstable resonators
Procedia PDF Downloads 598948 3D Human Face Reconstruction in Unstable Conditions
Authors: Xiaoyuan Suo
Abstract:
3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition
Procedia PDF Downloads 1498947 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension
Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto
Abstract:
In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor
Procedia PDF Downloads 2648946 Experimental Study of Unconfined and Confined Isothermal Swirling Jets
Authors: Rohit Sharma, Fabio Cozzi
Abstract:
A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.Keywords: acoustic probes, 3C-2D particle image velocimetry (PIV), precessing vortex core (PVC), recirculation zone (RZ)
Procedia PDF Downloads 2318945 Comparative Study of Radiation Protection in a Hospital Environment
Authors: Lahoucine Zaama, Sanae Douama
Abstract:
In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.Keywords: radiology, dosimetry, radiation, dose, transmission
Procedia PDF Downloads 4938944 Recurrent Wheezing and Associated Factors among 6-Year-Old Children in Adama Comprehensive Specialized Hospital Medical College
Authors: Samrawit Tamrat Gebretsadik
Abstract:
Recurrent wheezing is a common respiratory symptom among children, often indicative of underlying airway inflammation and hyperreactivity. Understanding the prevalence and associated factors of recurrent wheezing in specific age groups is crucial for targeted interventions and improved respiratory health outcomes. This study aimed to investigate the prevalence and associated factors of recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College in Ethiopia. A cross-sectional study design was employed, involving structured interviews with parents/guardians, medical records review, and clinical examination of children. Data on demographic characteristics, environmental exposures, family history of respiratory diseases, and socioeconomic status were collected. Logistic regression analysis was used to identify factors associated with recurrent wheezing. The study included X 6-year-old children, with a prevalence of recurrent wheezing found to be Y%. Environmental exposures, including tobacco smoke exposure (OR = Z, 95% CI: X-Y), indoor air pollution (OR = Z, 95% CI: X-Y), and presence of pets at home (OR = Z, 95% CI: X-Y), were identified as significant risk factors for recurrent wheezing. Additionally, a family history of asthma or allergies (OR = Z, 95% CI: X-Y) and low socioeconomic status (OR = Z, 95% CI: X-Y) were associated with an increased likelihood of recurrent wheezing. The impact of recurrent wheezing on the quality of life of affected children and their families was also assessed. Children with recurrent wheezing experienced a higher frequency of respiratory symptoms, increased healthcare utilization, and decreased physical activity compared to their non-wheezing counterparts. In conclusion, recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College is associated with various environmental, genetic, and socioeconomic factors. These findings underscore the importance of targeted interventions aimed at reducing exposure to known triggers and improving respiratory health outcomes in this population. Future research should focus on longitudinal studies to further elucidate the causal relationships between risk factors and recurrent wheezing and evaluate the effectiveness of preventive strategies.Keywords: wheezing, inflammation, respiratory, crucial
Procedia PDF Downloads 518943 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions
Authors: David Kriebel, Jan Edgar Mehner
Abstract:
The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function
Procedia PDF Downloads 2408942 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue
Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit
Abstract:
Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury
Procedia PDF Downloads 1518941 The Use of Ultrasound as a Safe and Cost-Efficient Technique to Assess Visceral Fat in Children with Obesity
Authors: Bassma A. Abdel Haleem, Ehab K. Emam, George E. Yacoub, Ashraf M. Salem
Abstract:
Background: Obesity is an increasingly common problem in childhood. Childhood obesity is considered the main risk factor for the development of metabolic syndrome (MetS) (diabetes type 2, dyslipidemia, and hypertension). Recent studies estimated that among children with obesity 30-60% will develop MetS. Visceral fat thickness is a valuable predictor of the development of MetS. Computed tomography and dual-energy X-ray absorptiometry are the main techniques to assess visceral fat. However, they carry the risk of radiation exposure and are expensive procedures. Consequently, they are seldom used in the assessment of visceral fat in children. Some studies explored the potential of ultrasound as a substitute to assess visceral fat in the elderly and found promising results. Given the vulnerability of children to radiation exposure, we sought to evaluate ultrasound as a safer and more cost-efficient alternative for measuring visceral fat in obese children. Additionally, we assessed the correlation between visceral fat and obesity indicators such as insulin resistance. Methods: A cross-sectional study was conducted on 46 children with obesity (aged 6–16 years). Their visceral fat was evaluated by ultrasound. Subcutaneous fat thickness (SFT), i.e., the measurement from the skin-fat interface to the linea alba, and visceral fat thickness (VFT), i.e., the thickness from the linea alba to the aorta, were measured and correlated with anthropometric measures, fasting lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR) and liver enzymes (ALT). Results: VFT assessed via ultrasound was found to strongly correlate with the BMI, HOMA-IR with AUC for VFT as a predictor of insulin resistance of 0.858 and cut off point of >2.98. VFT also correlates positively with serum triglycerides and serum ALT. VFT correlates negatively with HDL. Conclusions: Ultrasound, a safe and cost-efficient technique, could be a useful tool for measuring the abdominal fat thickness in children with obesity. Ultrasound-measured VFT could be an appropriate prognostic factor for insulin resistance, hypertriglyceridemia, and elevated liver enzymes in obese children.Keywords: metabolic syndrome, pediatric obesity, sonography, visceral fat
Procedia PDF Downloads 1188940 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara
Authors: Rafik Baouche, Rabah Chaouchi
Abstract:
This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.Keywords: stress, imagery, breakouts, sahara
Procedia PDF Downloads 758939 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators
Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho
Abstract:
Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.Keywords: direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines
Procedia PDF Downloads 1718938 A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System
Authors: Niaz Gharavi, Hexin Zhang
Abstract:
In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus.Keywords: shear field test method, BS EN 408, timber shear modulus, photogrammetry approach
Procedia PDF Downloads 2078937 Apps Reduce the Cost of Construction
Authors: Ali Mohammadi
Abstract:
Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.Keywords: layout, as-bilt, monitoring, maps
Procedia PDF Downloads 64