Search results for: discrete controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1405

Search results for: discrete controller

265 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism

Authors: Bin Bian, Liang Wang

Abstract:

A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.

Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking

Procedia PDF Downloads 106
264 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm

Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri

Abstract:

This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.

Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction

Procedia PDF Downloads 34
263 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method

Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption

Procedia PDF Downloads 520
262 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 107
261 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections

Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu

Abstract:

In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.

Keywords: connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control

Procedia PDF Downloads 357
260 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks

Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short

Abstract:

With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.

Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB

Procedia PDF Downloads 41
259 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton

Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna

Abstract:

A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.

Keywords: backstepping control, iterative control, Rehabilitation, ETS-MARSE

Procedia PDF Downloads 287
258 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 441
257 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar

Authors: Shaolin Allen Liao, Hual-Te Chien

Abstract:

Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.

Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar

Procedia PDF Downloads 346
256 Restoration of Digital Design Using Row and Column Major Parsing Technique from the Old/Used Jacquard Punched Cards

Authors: R. Kumaravelu, S. Poornima, Sunil Kumar Kashyap

Abstract:

The optimized and digitalized restoration of the information from the old and used manual jacquard punched card in textile industry is referred to as Jacquard Punch Card (JPC) reader. In this paper, we present a novel design and development of photo electronics based system for reading old and used punched cards and storing its binary information for transforming them into an effective image file format. In our textile industry the jacquard punched cards holes diameters having the sizes of 3mm, 5mm and 5.5mm pitch. Before the adaptation of computing systems in the field of textile industry those punched cards were prepared manually without digital design source, but those punched cards are having rich woven designs. Now, the idea is to retrieve binary information from the jacquard punched cards and store them in digital (Non-Graphics) format before processing it. After processing the digital format (Non-Graphics) it is converted into an effective image file format through either by Row major or Column major parsing technique.To accomplish these activities, an embedded system based device and software integration is developed. As part of the test and trial activity the device was tested and installed for industrial service at Weavers Service Centre, Kanchipuram, Tamilnadu in India.

Keywords: file system, SPI. UART, ARM controller, jacquard, punched card, photo LED, photo diode

Procedia PDF Downloads 167
255 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
254 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 48
253 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction

Authors: Rajendra Kumar

Abstract:

We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.

Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model

Procedia PDF Downloads 376
252 Covalently Conjugated Gold–Porphyrin Nanostructures

Authors: L. Spitaleri, C. M. A. Gangemi, R. Purrello, G. Nicotra, G. Trusso Sfrazzetto, G. Casella, M. Casarin, A. Gulino

Abstract:

Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas.

Keywords: gold nanoparticle, porphyrin, surface plasmon resonance, luminescence, nanostructures

Procedia PDF Downloads 156
251 The Effect of AMBs Number of a Dynamics Behavior of a Spur Gear Reducer in Non-Stationary Regime

Authors: Najib Belhadj Messaoud, Slim Souissi

Abstract:

The non-linear dynamic behavior of a single stage spur gear reducer is studied in this paper in transient regime. Driving and driver rotors are, respectively, powered by a motor torque Cm and loaded by a resistive torque Cr. They are supported by two identical Active Magnetic Bearings (AMBs). Gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiff-ness due to the variation of input rotational speed. Three models of AMBs were used with four, six and eight magnets. They are operated by P.D controller and powered by control and bias currents. The dynamic parameters of the AMBs are modeled by stiffness and damping matrices computed by the derivation of the electromagnetic forces. The equations of motion are solved iteratively using Newmark time integration method. In the first part of the study, the model is powered by an electric motor and by a four strokes four cylinders diesel engine in the second part. The numerical results of the dynamic responses of the system come to confirm the significant effect of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition. Results also confirm the influence of the magnet number by AMBs on the dynamic behavior of the system. Indeed, vibrations were more important in the case of gear reducer supported by AMBs with four magnets.

Keywords: motor, stiffness, gear, acyclism, fluctuation, torque

Procedia PDF Downloads 460
250 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: adaptive algorithm, fuzzy systems, membership functions, observer

Procedia PDF Downloads 207
249 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 186
248 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation

Procedia PDF Downloads 153
247 Interaction of Metals with Non-Conventional Solvents

Authors: Evgeny E. Tereshatov, C. M. Folden

Abstract:

Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes.

Keywords: mechanism, radioisotopes, solvent extraction, gas phase sorption

Procedia PDF Downloads 103
246 Experimental Assessment of a Grid-Forming Inverter in Microgrid Islanding Operation Mode

Authors: Dalia Salem, Detlef Schulz

Abstract:

As Germany pursues its ambitious plan towards a power system based on renewable energy sources, the necessity to establish steady, robust microgrids becomes more evident. Inside the microgrid, there is at least one grid-forming inverter responsible for generating the coupling voltage and stabilizing the system frequency within the standardized accepted limits when the microgrid is forced to operate as a stand-alone power system. Grid-forming control for distributed inverters is required to enable steady control of a low-inertia power system. In this paper, a designed droop control technique is tested at the controller of an inverter as a component of a hardware test bed to understand the microgrid behavior in two modes of operation: i) grid-connected and ii) operating in islanding mode. This droop technique includes many current and voltage inner control loops, where the Q-V and P-f droop provide the required terminal output voltage and frequency. The technique is tested first in a simulation model of the inverter in MATLAB/SIMULINK, and the results are compared to the results of the hardware laboratory test. The results of this experiment illuminate the pivotal role of the grid-forming inverter in facilitating microgrid resilience during grid disconnection events and how microgrids could provide the functionality formerly provided by synchronous machinery, such as the black start process.

Keywords: microgrid, grid-forming inverters, droop-control, islanding-operation

Procedia PDF Downloads 71
245 Fluid–Structure Interaction Modeling of Wind Turbines

Authors: Andre F. A. Cyrino

Abstract:

Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.

Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade

Procedia PDF Downloads 268
244 Effect of Bi-Dispersity on Particle Clustering in Sedimentation

Authors: Ali Abbas Zaidi

Abstract:

In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain.

Keywords: dispersion in bi-disperse settling particles, particle microstructures in bi-disperse suspensions, particle resolved direct numerical simulations, settling of bi-disperse particles

Procedia PDF Downloads 208
243 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System

Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad

Abstract:

The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.

Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor

Procedia PDF Downloads 119
242 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants

Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey

Abstract:

The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.

Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model

Procedia PDF Downloads 144
241 Correlative Look at Relationship between Emotional Intelligence and Effective Crisis Management in Context of Covid-19 in France and Canada

Authors: Brittany Duboz-Quinville

Abstract:

Emotional Intelligence (EI) is a growing field, and many studies are examining how it pertains to the workplace. In the context of crisis management several studies have postulated that EI could play a role in individuals’ ability to execute crisis plans. However, research evaluating the EI of leaders who have actually managed a crisis is still lacking. The COVID-19 pandemic forced many businesses into a crisis situation beginning in March and April of 2020. This study sought to measure both EI and effective crisis management (CM) during the COVID-19 pandemic to determine if they were positively correlated. A quantitative survey was distributed via the internet that comprised of 15 EI statements, and 15 CM statements with Likert scale responses, and 6 demographic questions with discrete responses. The hypothesis of the study was: it is believed that EI correlates positively with effective crisis management. The results of the study did not support the studies hypothesis as the correlation between EI and CM was not statistically significant. An additional correlation was tested, comparing employees’ perception of their superiors’ EI (Perception) to employees’ opinion of how their superiors managed the crisis (Opinion). This Opinion and Perception correlation was statistically significant. Furthermore, by examining this correlation through demographic divisions there are additional significant results, notably that French speaking employees have a stronger Opinion/Perception correlation than English speaking employees. Implications for cultural differences in EI and CM are discussed as well as possible differences across job sectors. Finally, it is hoped that this study will serve to convince more companies, particularly in France, to embrace EI training for staff and especially managers.

Keywords: crisis management, emotional intelligence, empathy, management training

Procedia PDF Downloads 166
240 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 309
239 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 414
238 An Investigation into the Impacts of High-Frequency Electromagnetic Fields Utilized in the 5G Technology on Insects

Authors: Veriko Jeladze, Besarion Partsvania, Levan Shoshiashvili

Abstract:

This paper addresses a very topical issue today. The frequency range 2.5-100 GHz contains frequencies that have already been used or will be used in modern 5G technologies. The wavelengths used in 5G systems will be close to the body dimensions of small size biological objects, particularly insects. Because the body and body parts dimensions of insects at these frequencies are comparable with the wavelength, the high absorption of EMF energy in the body tissues can occur(body resonance) and therefore can cause harmful effects, possibly the extinction of some of them. An investigation into the impact of radio-frequency nonionizing electromagnetic field (EMF) utilized in the future 5G on insects is of great importance as a very high number of 5G network components will increase the total EMF exposure in the environment. All ecosystems of the earth are interconnected. If one component of an ecosystem is disrupted, the whole system will be affected (which could cause cascading effects). The study of these problems is an important challenge for scientists today because the existing studies are incomplete and insufficient. Consequently, the purpose of this proposed research is to investigate the possible hazardous impact of RF-EMFs (including 5G EMFs) on insects. The project will study the effects of these EMFs on various insects that have different body sizes through computer modeling at frequencies from 2.5 to 100 GHz. The selected insects are honey bee, wasp, and ladybug. For this purpose, the detailed 3D discrete models of insects are created for EM and thermal modeling through FDTD and will be evaluated whole-body Specific Absorption Rates (SAR) at selected frequencies. All these studies represent a novelty. The proposed study will promote new investigations about the bio-effects of 5G-EMFs and will contribute to the harmonization of safe exposure levels and frequencies of 5G-EMFs'.

Keywords: electromagnetic field, insect, FDTD, specific absorption rate (SAR)

Procedia PDF Downloads 91
237 A New Smart Plug for Home Energy Management

Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu

Abstract:

Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.

Keywords: energy efficiency, home energy management, smart home, smart plug

Procedia PDF Downloads 730
236 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 280