Search results for: temporal indicator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1973

Search results for: temporal indicator

863 Assessing the Walkability and Urban Design Qualities of Campus Streets

Authors: Zhehao Zhang

Abstract:

Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.

Keywords: walkability, streetscapes, pedestrian activity, walk score

Procedia PDF Downloads 147
862 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 160
861 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 60
860 Incidence and Causes of Elective Surgery Cancellations in Songklanagarind Hospital, Thailand

Authors: A. Kaeotawee, N. Bunmas, W. Chomthong

Abstract:

Background: The cancellation of elective surgery is a major indicator of poor operating room efficiency. Furthermore, it is recognized as a major cause of emotional trauma to patients as well as their families. This study was carried out to assess the incidence and causes of elective surgery cancellation in our setting and to find the appropriate solutions for better quality management. Objective: To determine the incidence and causes of elective surgery cancellations in Songklanagarind Hospital. Material and Method: A prospective survey was conducted from September to November 2012. All patients who had their scheduled elective operations cancelled were assessed. Data was collected on the following 2 components: (1) patient demographics;(2) main reasons for cancellations, which were grouped into patient-related factors and organizational-related factors. Data are reported as a percentage of patients whose operations were cancelled. The association between cancellation status and patient demographics was assessed using univariate logistic regression. Results: 2,395 patients were scheduled for elective surgery and of these 343 (14.3%) had their operations cancelled. Cardiothoracic surgery had the highest rate of cancellations (28.7%) while the least number of cancellations occurred in ophthalmology (10.1%). The main reasons for cancellations were related to the unit's organization (53.6%), due to the surgeon (48.4%). Patient related causes (46.4%), due to non medical reasons (32.1%). The most common cause of cancellation by the surgeon was lack of theater time (21.3%), by patients due to the patient’s nonappearance (25.1%). Cancellation was significantly associated with type of patient, health insurance, type of anesthesia and specialties (p<0.05). Conclusion: Surgery cancellations by surgeons relating to a lack of theater time was a significant problem in our setting. Appropriate solutions for better quality improvement are needed.

Keywords: elective cases, surgery cancellation, quality management, appropriate solutions

Procedia PDF Downloads 261
859 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 152
858 Shelf Life of Frozen Processed Foods for Extended Durability

Authors: Manfreda Gerardo, Pasquali Frederique, Pepe Tiziana, Anastasio Aniello, Ianieri Adriana

Abstract:

The aim of the research was to evaluate the shelf life of a REPFED’s product (lasagna alla bolognese), developed as a product to be marketed fresh after defrosting. Three different samples were prepared: A, B and C, which presented differences in relation to the recipe, pasteurization technique and packaging on which the trend of the shelf-life indicator parameters was evaluated during a period of prolonged shelf life. The analytical plan involved the measurement of microbiological, chemical-physical and organoleptic parameters over 7 moments of storage selected in a period of 33 days. CBT, LAB, enterobacteria, E. coli, yeasts, molds, S. coagulase positive, B. cereus, Salmonella spp and L. monocytogenes, pH, Aw, Kreiss test, peroxides, atmosphere inside the packages, and organoleptic characteristics were determined. The results demonstrated the effect of post-packaging pasteurization on the shelf life of fresh from frozen products. However, the products pasteurized at 95°C in the absence of steam showed microbiological parameters that were not appropriate for an extended shelf life of up to 60 days. On the contrary, the samples pasteurized at 98°C with steam saturation and counterpressure showed values compatible with an extended shelf life. The results of the chemical-physical analyses highlighted how recipe and packaging affect the chemical-physical and organoleptic parameters. In conclusion, this preliminary study confirmed the effectiveness of post-packaging pasteurization treatments aimed at extending the shelf life of the product, helping the food company to occupy market niches even very distant from the production sites.

Keywords: shelf life, REPFED’s product, extended durability, pasteurization

Procedia PDF Downloads 32
857 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: fire dynamics, flame propagation, locomotive fire, soot flow pattern, non-air-conditioned coaches

Procedia PDF Downloads 297
856 Temporal Change in Bonding Strength and Antimicrobial Effect of a Zirconia after Nonthermal Atmospheric Pressure Plasma Treatment

Authors: Chan Park, Sang-Won Park, Kwi-Dug Yun, Hyun-Pil Lim

Abstract:

Purpose: Plasma treatment under various conditions has been studied to increase the bonding strength and surface sterilization of dental ceramic materials. We assessed the evolution of the shear bond strength (SBS) and antimicrobial effect of nonthermal atmospheric pressure plasma (NTAPP) treatment over time. Methods: Presintered zirconia specimens were manufactured as discs (diameter: 15 mm, height: 2 mm) after final sintering. The specimens then received a 30-min treatment with argon gas (Ar², 99.999%; 10 L/min) using an NTAPP device. Five post-treatment intervals were evaluated: control (no treatment), P0 (within 1 h), P1 (24 h), P2 (48 h), and P3 (72 h). This study investigated the surface characteristics, SBS of two different resin cement (RelyXTM U200 self-adhesive resin cement, Panavia F2.0 methacryloyloxydecyl dihydrogen phosphate (MDP)-based resin cement), and Streptococcus mutans biofilm formation. Results: The SBS of RelyXTM U200 increased significantly (p < 0.05) within 2 days following plasma treatment (P0, P1, P2). For Panavia F 2.0, a significant decrease (p < 0.05) was detected only in the group that had undergone cementation immediately after plasma treatment (P0). S. mutans adhesion decreased significantly (p < 0.05) within 2 days of plasma treatment (P0, P1, P2) compared to the control group. The P0 group displayed a lower biofilm thickness than the P1 and P2 groups (p < 0.05). Conclusions: After NTAPP treatment of zirconia, the effects on bonding strength and antimicrobial growth persist for a limited duration. The effect of NTAPP treatment on bonding strength depends on the resin cement.

Keywords: NTAPP, SBS, antimicrobial effect, zirconia

Procedia PDF Downloads 247
855 Magnetic Resonance Imaging for Assessment of the Quadriceps Tendon Cross-Sectional Area as an Adjunctive Diagnostic Parameter in Patients with Patellofemoral Pain Syndrome

Authors: Jae Ni Jang, SoYoon Park, Sukhee Park, Yumin Song, Jae Won Kim, Keum Nae Kang, Young Uk Kim

Abstract:

Objectives: Patellofemoral pain syndrome (PFPS) is a common clinical condition characterized by anterior knee pain. Here, we investigated the quadriceps tendon cross-sectional area (QTCSA) as a novel predictor for the diagnosis of PFPS. By examining the association between the QTCSA and PFPS, we aimed to provide a more valuable diagnostic parameter and more equivocal assessment of the diagnostic potential of PFPS by comparing the QTCSA with the quadriceps tendon thickness (QTT), a traditional measure of quadriceps tendon hypertrophy. Patients and Methods: This retrospective study included 30 patients with PFPS and 30 healthy participants who underwent knee magnetic resonance imaging. T1-weighted turbo spin echo transverse magnetic resonance images were obtained. The QTCSA was measured on the axial-angled phases of the images by drawing outlines, and the QTT was measured at the most hypertrophied quadriceps tendon. Results: The average QTT and QTCSA for patients with PFPS (6.33±0.80 mm and 155.77±36.60 mm², respectively) were significantly greater than those for healthy participants (5.77±0.36 mm and 111.90±24.10 mm2, respectively; both P<0.001). We used a receiver operating characteristic curve to confirm the sensitivities and specificities for both the QTT and QTCSA as predictors of PFPS. The optimal diagnostic cutoff value for QTT was 5.98 mm, with a sensitivity of 66.7%, a specificity of 70.0%, and an area under the curve of 0.75 (0.62–0.88). The optimal diagnostic cutoff value for QTCSA was 121.04 mm², with a sensitivity of 73.3%, a specificity of 70.0%, and an area under the curve of 0.83 (0.74–0.93). Conclusion: The QTCSA was found to be a more reliable diagnostic indicator for PFPS than QTT.

Keywords: patellofemoral pain syndrome, quadriceps muscle, hypertrophy, magnetic resonance imaging

Procedia PDF Downloads 58
854 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit gene, amoA, ammonia-oxidizing bacteria, AOB, nitrite-oxidizing bacteria, NOB, specific nitrification rate

Procedia PDF Downloads 464
853 Spatial Pattern of Child Sex Ratio in Haryana 1991-2011

Authors: Sunil Kumar, Kavita Saini

Abstract:

Haryana emerged as a state after the separation from Punjab since November, 1966. It had only 7 districts at that time but subsequently their number increased and presents their 21 districts in the state. Age and sex composition occupies very important positions in any discussion on characteristics of a population. Changes in sex ratio largely reflect the underlying socio-economic and cultural patterns of a society in different ways. Child sex ratio in Haryana is continuously decreasing and according to the census child sex ratio found lowest position in the state. Therefore, the aims of this study to examine the spatial- temporal pattern of Child sex ratio during the period 1991-2011 and identify the ‘epicenter’ or core areas of deficit of females in Haryana using tehsil level data during the period 2001-2011. This study is primarily based on the secondary sources and data were collected from the ‘Census of India’ and ‘Statistical Department’ of Haryana. The standard deviation method has been used to see the average value of child sex ratio in the study. The maximum child sex ratio declined is noticed in the district of Mahendergarh, Jhajjar, Rewari and Sonipat. However, the west and south-western part of the state marked with consistently better child sex ratio throughout the period. This is vast contiguous belt running in the north-west to south-east direction from Punjab border to NCT of Delhi and reported a very low child sex ratio. Tehsils which have reported lower child sex ratio than the state average has been called ‘Core Problem Area’ or ‘epicenter’.

Keywords: child sex ratio, core areas, epicenter, Haryana

Procedia PDF Downloads 415
852 Community Education Leadership and Organizational Culture: Perceptions of Empowerment

Authors: Aisha M. Khairat

Abstract:

Community education in the Arab Republic of Egypt is a model that provides education to remote, underprivileged villages and hamlets where children have no access to public education. The community education model is based on the philosophy of transforming individuals to reach their full potential and on instilling the seeds of empowerment and citizenship to induce societal transformation. This research aims at investigating the degree to which the leadership style and organizational culture of the Egyptian community schools demonstrates an empowering approach. Nile Valley NGO, an Egyptian Non-Governmental Organization (NGO) leading hundreds of Egyptian community schools was studied to investigate the perceptions of empowerment amongst its leadership. This in turn will have serious implications on the level of empowerment the communities managed by Nile Valley NGO are experiencing, and will serve as an indicator to the degree to which community schools are achieving their goals in transforming individuals and empowering communities and reforming Egyptian education – and not just a tool to reach literacy. This mixed-methods research utilized surveys and semi-structured interviews to capture the perceptions of empowerment in the views of a sample of 380 community schools facilitators (teachers) spanning 8 Egyptian governorates and Nile Valley NGO’s community education project team and leadership. The findings demonstrate interesting leadership approaches with traits from transformational and servant leadership theoretical models. The organizational culture at Nile Valley NGO reflects the universal dichotomy between market-oriented and humanitarian orientations. The perceptions of empowerment were positive, and several success stories were uncovered in spite of the many challenges faced on the national level and despite the scarcity or resources.

Keywords: community education, community schools in Egypt, empowerment, organizational culture, leadership

Procedia PDF Downloads 184
851 The Role of Privatization on the Formulation of Productive Supply Chain: The Case of Ethiopian Firms

Authors: Merhawit Fisseha Gebremariam, Yohannes Yebabe Tesfay

Abstract:

This study focuses on the formulation of a sustainable, effective, and efficient supply chain strategy framework that will enable Ethiopian privatized firms. The study examined the role of privatization in productive sourcing, production, and delivery to Ethiopian firm’s performances. To analyze our hypothesis, the authors applied the concepts of Key Performance Indicator (KPI), strategic outsourcing, purchasing portfolio analysis, and Porter's marketing analysis. The authors selected ten privatized companies and compared their financial, market expansion, and sustainability performances. The Chi-Square Test showed that at the 5% level of significance, privatization and outsourcing activities can assist the business performances of Ethiopian firms in terms of product promotion and new market expansion. At the 5% level of significance, the independent t-test result showed that firms that were privatized by Ethiopian investors showed stronger financial performance than those that were privatized by foreign investors. Furthermore, it is better if Ethiopian firms apply both cost leadership and differentiated strategy to enhance thriving in their business area. Ethiopian firms need to implement the supply chain operations reference (SCOR) model for an exclusive framework that supports communication links the supply chain partners, and enhances productivity. The government of Ethiopia should be aware that the privatization of firms by Ethiopian investors will strengthen the economy. Otherwise, the privatization process will be risky for the country, and therefore, the government of Ethiopia should stop doing those activities.

Keywords: correlation analysis, market strategies, KPIs, privatization, risk and Ethiopia

Procedia PDF Downloads 75
850 Lagrangian Approach for Modeling Marine Litter Transport

Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo

Abstract:

The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.

Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift

Procedia PDF Downloads 197
849 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 276
848 Noise Pollution in Nigerian Cities: Case Study of Bida, Nigeria

Authors: Funke Morenike Jiyah, Joshua Jiyah

Abstract:

The occurrence of various health issues have been linked to excessive noise pollution in all works of life as evident in many research efforts. This study provides empirical analysis of the effects of noise pollution on the well-being of the residents of Bida Local Government Area, Niger State, Nigeria. The study adopted a case study research design, involving cross-sectional procedure. Field observations and medical reports were obtained to support the respondents’ perception on the state of their well-being. The sample size for the study was selected using the housing stock in the various wards. One major street in each ward was selected. A total of 1,833 buildings were counted along the sampled streets and 10% of this was selected for the administration of structured questionnaire.The environmental quality of the wards was determined by measuring the noise level using Testo 815 noise meters. The result revealed that Bariki ward which houses the GRA has the lowest noise level of 37.8 dB(A)while the noise pollution levels recorded in the other thirteen wards were all above the recommended levels. The average ambient noise level in sawmills, commercial centres, road junctions and industrial areas were above 90 dB(A). The temporal record from the Federal Medical Centre, Bida revealed that, apart from malaria, hypertension (5,614 outpatients) was the most prevalent health issue in 2013 alone. The paper emphasised the need for compatibility consideration in the choice of residential location, the use of ear muffler and effective enforcement of zoning regulations.

Keywords: bida, decibels, environmental quality, noise, well-being

Procedia PDF Downloads 139
847 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 187
846 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 74
845 Sandy Soil Properties under Different Plant Cover Types in Drylands, Sudan

Authors: Rayan Elsiddig Eltaib, Yamanaka Norikazu, Mubarak Abdelrahman Abdalla

Abstract:

This study investigated the effects of Acacia Senegal, Calotropis procera, Leptadenia pyrotechnica, Ziziphus spina Christi, Balanites aegyptiaca, Indigofera oblongigolia, Arachis hypogea and Sesimum indicum grown in the western region of White Nile State on soil properties of the 0-10, 10-30, 30-60 and 60-90 cm depths. Soil properties were: pH(paste), electrical conductivity of the saturation extract (ECe), total N (TN), organic carbon (OC), soluble K, available P, aggregate stability and water holding capacity. Triplicate Soil samples were collected after the end of the rainy season using 5 cm diameter auger. Results indicated that pH, ECe and TN were not significantly different among plant cover types. In the top 10-30 cm depth, OC under all types was significantly higher than the control (4.1 to 7.7 fold). The highest (0.085%) OC was found under the Z. spina Christi and A. Senegal whereas the lowest (0.045%) was reported under the A. hypogea. In the 10-30 cm depth, with the exception of A. hypogea, Z. spina christi and S. indicum, P content was almost similar but significantly higher than the control by 72 to 129%. In the 10-30 cm depth, K content under the S. indicum (0.46 meq/L) was exceptionally high followed by Z. spina christi (0.102 meq/L) as compared to the control (0.029 meq/L). Water holding capacity and aggregate stability of the top 0-10 cm depth were not significantly different among plant cover types. Based on the fact that accumulation of organic matter in the soil profile of any ecosystem is an important indicator of soil quality, results of this study may conclude that (1) cultivation of A.senegal, B.aegyptiaca and Z. spina Christi improved soil quality whereas (2) cultivation of A. hypogea or soil that is solely invaded with C. procera and L.pyrotechnica may induce soil degradation.

Keywords: canopy, crops, shrubs, soil properties, trees

Procedia PDF Downloads 286
844 The Implementation of Educational Partnerships for Undergraduate Students at Yogyakarta State University

Authors: Broto Seno

Abstract:

This study aims to describe and examine more in the implementation of educational partnerships for undergraduate students at Yogyakarta State University (YSU), which is more focused on educational partnerships abroad. This study used descriptive qualitative approach. The study subjects consisted of a vice-rector, two staff education partnerships, four vice-dean, nine undergraduate students and three foreign students. Techniques of data collection using interviews and document review. Validity test of the data source using triangulation. Data analysis using flow models Miles and Huberman, namely data reduction, data display, and conclusion. Results of this study showed that the implementation of educational partnerships abroad for undergraduate students at YSU meets six of the nine indicators of the success of strategic partnerships. Six indicators are long-term, strategic, mutual trust, sustainable competitive advantages, mutual benefit for all the partners, and the separate and positive impact. The indicator has not been achieved is cooperative development, successful, and world class / best practice. These results were obtained based on the discussion of the four formulation of the problem, namely: 1) Implementation and development of educational partnerships abroad has been running good enough, but not maximized. 2) Benefits of the implementation of educational partnerships abroad is providing learning experiences for students, institutions of experience in comparison to each faculty, and improving the network of educational partnerships for YSU toward World Class University. 3) The sustainability of educational partnerships abroad is pursuing a strategy of development through improved management of the partnership. 4) Supporting factors of educational partnerships abroad is the support of YSU, YSU’s partner and society. Inhibiting factors of educational partnerships abroad is not running optimally management.

Keywords: partnership, education, YSU, institutions and faculties

Procedia PDF Downloads 337
843 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 141
842 Estimating Heavy Metal Leakage and Environmental Damage from Cigarette Butt Disposal in Urban Areas through CBPI Evaluation

Authors: Muhammad Faisal, Zai-Jin You, Muhammad Naeem

Abstract:

Concerns about the environment, public health, and the economy are raised by the fact that the world produces around 6 trillion cigarettes annually. Arguably the most pervasive forms of environmental litter, this dangerous trash must be eliminated. The researchers wanted to get an idea of how much pollution is seeping out of cigarette butts in metropolitan areas by studying their distribution and concentration. In order to accomplish this goal, the cigarette butt pollution indicator was applied in 29 different areas. The locations were monitored monthly for a full calendar year. The conditions for conducting the investigation of the venues were the same on both weekends and during the weekdays. By averaging the metal leakage ratio in various climates and the average weight of cigarette butts, we were able to estimate the total amount of heavy metal leakage. The findings revealed that the annual average value of the index for the areas that were investigated ranged from 1.38 to 10.4. According to these numbers, just 27.5% of the areas had a low pollution rating, while 43.5% had a major pollution status or worse. Weekends witnessed the largest fall (31% on average) in all locations' indices, while spring and summer saw the largest increase (26% on average) compared to autumn and winter. It was calculated that the average amount of heavy metals such as Cr, Cu, Cd, Zn, and Pb that seep into the environment from discarded cigarette butts in commercial, residential, and park areas, respectively, is 0.25 µg/m2, 0.078 µg/m2, and 0.18 µg/m2. Butt from cigarettes is one of the most prevalent forms of litter in the area that was examined. This litter is the origin of a wide variety of contaminants, including heavy metals. This toxic garbage poses a significant risk to the city.

Keywords: heavy metal, hazardous waste, waste management, litter

Procedia PDF Downloads 86
841 Clinical Characteristics of Retinal Detachment Associated with Atopic Dermatitis

Authors: Hyoung Seok Kim

Abstract:

Purpose: To evaluate the clinical characteristics and surgical outcomes of retinal detachment associated with atopic dermatitis. Methods: A retrospective investigation of clinical notes of 37 patients with retinal detachment associated with atopic dermatitis was conducted from January 2019 to December 2023. Initial visual acuity, medical history, type of retinal detachment, number of tears, types of treatment, success rate of treatment, and presence of cataract were investigated. To evaluate the relationship with cataract, the patients were classified into three groups according to lens status: group A (eyes with clear lens), group B (eyes with cataract), and group C (pseudophakic eyes). Results: Of the 37 patients, 29 were male and 8 were female; 10 patients had bilateral retinal detachment (27.0%). The retinal breaks were often located temporally (89.4%), with only 5 cases (10.6%) involving nasal-side retinal breaks. No significant differ ences were noted in the ratio of males to females, age distribution, visual acuity before and after treatments, axial length, and lo cation of retina breaks among the three groups. After primary surgery, retinal detachment recurred in 12 patients (14 eyes), 5 of whom were initially diagnosed with bilateral retinal detachment. In addition, 12 of 14 eyes underwent a second operation, in which detachment recurred in 3 eyes. Conclusions: Incidence of bilateral retinal detachment was high in patients with atopic dermatitis, and the retinal breaks were of ten found on the temporal side. Retinal re-detachment was statistically high in patients with cataract or pseudophakic eyes com pared to patients with clear lens (p = 0.024).

Keywords: retinal detachment, atopic dermatitis, cataract, retina surgery

Procedia PDF Downloads 29
840 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 397
839 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 106
838 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey

Authors: Çağan Alevkayali, Şermin Tağil

Abstract:

Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.

Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization

Procedia PDF Downloads 329
837 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 218
836 Effect of a Single Injection of hCG on Testosterone Concentration in Male Alpacas

Authors: A. ElZawam, D. McLean, A. Tibary

Abstract:

In alpaca, age at puberty is variable and the factors regulating the pattern of puberty and sexual maturation are a subject of controversy. Plasma testosterone level is often used as an indicator of sexual maturity. Our hypothesis is that hCG treatment will cause an increase in testosterone level that is correlated with animal age. The specific aim was to investigate the testicular tissue response to a single hCG injection by monitoring the serum testosterone concentration. Eighty four (n=84) males ranging in age from 6 to 60 months were used. Alpacas were grouped based on their ages into 15 groups. Each group had three to five male animals. Blood samples were collected from the jugular vein before treatment with hCG and 2 hours after intravenous administration of 3000 IU of hCG (Chorulon®). The serum was harvested and stored at -20ºC until the analysis. The effect of age on basal testosterone level and response to hCG treatment was evaluated by Analysis of Variance. As a result, basal serum testosterone concentrations were very low (<0.1ng/ml) until 9 months of age. Although basal serum testosterone concentrations increased steadily with age there was a significant variation amongst males within the same age group. Administration of 3000 IU of hCG, resulted in an average increase of 50% (P<0.05) in serum testosterone concentration after 2 hours. The percentage increase in serum testosterone in response to hCG stimulation varied from 51 to 81%. There was no correlation between the degree of response and age. However, the response to hCG injection presented two modes of increase depending on the age of animals. The first mode occurred at ages 9 to 14 months and the second mode was observed between 22 and 36 months. In conclusion, our results suggest that testicular growth and sensitivity to LH stimulation may be bimodal in the male alpaca with a rapid increase in growth and sensitivity between 9 and 14 months of age and a second phase of increased responsiveness after 21 months of ages.

Keywords: alpaca, testosterone, hCG, animal science

Procedia PDF Downloads 576
835 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 103
834 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging

Authors: Daofan Guo, Dong Yang

Abstract:

For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.

Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring

Procedia PDF Downloads 149