Search results for: revenue generation system
19045 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement
Authors: Hu Zhenxing, Gao Jianxin
Abstract:
Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D
Procedia PDF Downloads 49519044 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System
Authors: Pachawo Bisani, Goodall Nyirenda
Abstract:
The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy
Procedia PDF Downloads 9819043 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt
Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar
Abstract:
Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt
Procedia PDF Downloads 57019042 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.Keywords: feature generation, feature learning, genetic algorithm, music information retrieval
Procedia PDF Downloads 43319041 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 17619040 Kuwait Environmental Remediation Program: Waste Management Data Analytics for Planning and Optimization of Waste Collection
Authors: Aisha Al-Baroud
Abstract:
The United Nations Compensation Commission (UNCC), Kuwait National Focal Point (KNFP) and Kuwait Oil Company (KOC) cooperated in a joint project to undertake comprehensive and collaborative efforts to remediate 26 million m3 of crude oil contaminated soil that had resulted from the Gulf War in 1990/1991. These efforts are referred to as the Kuwait Environmental Remediation Program (KERP). KOC has developed a Total Remediation Solution (TRS) for KERP, which will guide the Remediation projects, comprises of alternative remedial solutions with treatment techniques inclusive of limited landfills for non-treatable soil materials disposal, and relies on treating certain ranges of Total Petroleum Hydrocarbon (TPH) contamination with the most appropriate remediation techniques. The KERP Remediation projects will be implemented within the KOC’s oilfields in North and South East Kuwait. The objectives of this remediation project is to clear land for field development and treat all the oil contaminated features (dry oil lakes, wet oil lakes, and oil contaminated piles) through TRS plan to optimize the treatment processes and minimize the volume of contaminated materials to be placed into landfills. The treatment strategy will comprise of Excavation and Transportation (E&T) of oil contaminated soils from contaminated land to remote treatment areas and to use appropriate remediation technologies or a combination of treatment technologies to achieve remediation target criteria (RTC). KOC has awarded five mega projects to achieve the same and is currently in the execution phase. As a part of the company’s commitment to environment and for the fulfillment of the mandatory HSSEMS procedures, all the Remediation contractors needs to report waste generation data from the various project activities on a monthly basis. Data on waste generation is collected in order to implement cost-efficient and sustainable waste management operations. Data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information for planning and optimization of waste collection and recycling.Keywords: waste, tencnolgies, KERP, data, soil
Procedia PDF Downloads 11219039 Modelling and Simulation of Bioethanol Production from Food Waste Using CHEMCAD Software
Authors: Kgomotso Matobole, Noluzuko Monakali, Hilary Rutto, Tumisang Seodigeng
Abstract:
On a global scale, there is an alarming generation of food waste. Food waste is generated across the food supply chain. Worldwide urbanization, as well as global economic growth, have contributed to this amount of food waste the environment is receiving. Food waste normally ends on illegal dumping sites when not properly disposed, or disposed to landfills. This results in environmental pollution due to inadequate waste management practices. Food waste is rich in organic matter and highly biodegradable; hence, it can be utilized for the production of bioethanol, a type of biofuel. In so doing, alternative energy will be created, and the volumes of food waste will be reduced in the process. This results in food waste being seen as a precious commodity in energy generation instead of a pollutant. The main aim of the project was to simulate a biorefinery, using a software called CHEMCAD 7.12. The resulting purity of the ethanol from the simulation was 98.9%, with the feed ratio of 1: 2 for food waste and water. This was achieved by integrating necessary unit operations and optimisation of their operating conditions.Keywords: fermentation, bioethanol, food waste, hydrolysis, simulation, modelling
Procedia PDF Downloads 37319038 Video Based Automatic License Plate Recognition System
Authors: Ali Ganoun, Wesam Algablawi, Wasim BenAnaif
Abstract:
Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences.Keywords: license plate recognition, localization, segmentation, recognition
Procedia PDF Downloads 46019037 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search
Procedia PDF Downloads 15519036 Developing a Multiagent-Based Decision Support System for Realtime Multi-Risk Disaster Management
Authors: D. Moser, D. Pinto, A. Cipriano
Abstract:
A Disaster Management System (DMS) for countries with different disasters is very important. In the world different disasters like earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters occurs and have an effect on the population. It is also possible that two or more disasters arisen at the same time, this means to handle multi-risk situations. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs deal with one (in the case of an earthquake-tsunami combination with two) disaster and often with one particular disaster. Nevertheless, a DSS helps for a better realtime response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture, and well-defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future.Keywords: decision support system, disaster management system, multi-risk, multiagent system
Procedia PDF Downloads 42919035 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 10519034 Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq
Abstract:
Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 39719033 Impact of a Structured Antimicrobial Stewardship Program in a North-East Italian Hospital
Authors: Antonio Marco Miotti, Antonella Ruffatto, Giampaola Basso, Antonio Madia, Giulia Zavatta, Emanuela Salvatico, Emanuela Zilli
Abstract:
A National Action Plan to fight antimicrobial resistance was launched in Italy in 2017. In order to reduce inappropriate exposure to antibiotics and infections from multi-drug resistant bacteria, it is essential to set up a structured system of surveillance and monitoring of the implementation of National Action Plan standards, including antimicrobial consumption, with a special focus on quinolones, third generation cephalosporins and carbapenems. A quantitative estimate of antibiotic consumption (defined daily dose - DDD - consumption per 100 days of hospitalization) has been provided by the Pharmaceutical Service to the Hospital of Cittadella, ULSS 6 Euganea – Health Trust (District of Padua) for the years 2019 (before the pandemic), 2020 and 2021 for all classes of antibiotics. Multidisciplinary meetings have been organized monthly by the local Antimicrobial Stewardship Group. Between 2019 and 2021, an increase in the consumption of carbapenems in the Intensive Care Unit (from 12.2 to 18.2 DDD, + 49.2%) and a decrease in Medical wards (from 5.3 to 2.6 DDD, - 50.9%) was reported; a decrease in the consumption of quinolones in Intensive Care Unit (from 17.2 to 10.8 DDD, - 37.2%), Medical wards (from 10.5 to 6.6 DDD, - 37.1%) and Surgical wards (from 10.2 to 9.3 DDD, - 8.8%) was highlighted; an increase in the consumption of third generation cephalosporins in Medical wards (from 18.1 to 22.6 DDD, + 24,1%) was reported. Finally, after an increase in the consumption of macrolides between 2020 and 2019, in 2021, a decrease was reported in the Intensive Care Unit (DDD: 8.0 in 2019, 18.0 in 2020, 6.4 in 2021) and Medical wards (DDD: 9.0 in 2019, 13.7 in 2020, 10.9 in 2021). Constant monitoring of antimicrobial consumption and timely identifying of warning situations that may need a specific intervention are the cornerstone of Antimicrobial Stewardship programs, together with analysing data on bacterial resistance rates and infections from multi-drug resistant bacteria.Keywords: carbapenems, quinolones, antimicrobial, stewardship
Procedia PDF Downloads 15419032 Brand Management Model in Professional Football League
Authors: Vajiheh Javani
Abstract:
The study aims to examine brand image in Iran's professional Football League (2014-2015). The study was descriptive survey one. A sample of Iranian professional football league fans (N=911) responded four items questionnaire. A structural equation model (SEM) test with maximum likelihood estimation was performed to test the relationships among the research variables. The analyses of data showed three dimensions of brand image influenced on fan’s brand loyalty of which the attitude was the most important. Benefits and attributes were placed in the second and third rank respectively. According to results, brand image plays a pivotal role between Iranian fans brand loyalty. Create an attractive and desirable brand image in the fans mind increases brand loyalty. Moreover due to, revenue and profits increase through ticket sales and products of club and also attract more sponsors.Keywords: brand management, sport industry, brand image, fans
Procedia PDF Downloads 33319031 Residual Life Estimation of K-out-of-N Cold Standby System
Authors: Qian Zhao, Shi-Qi Liu, Bo Guo, Zhi-Jun Cheng, Xiao-Yue Wu
Abstract:
Cold standby redundancy is considered to be an effective mechanism for improving system reliability and is widely used in industrial engineering. However, because of the complexity of the reliability structure, there is little literature studying on the residual life of cold standby system consisting of complex components. In this paper, a simulation method is presented to predict the residual life of k-out-of-n cold standby system. In practical cases, failure information of a system is either unknown, partly unknown or completely known. Our proposed method is designed to deal with the three scenarios, respectively. Differences between the procedures are analyzed. Finally, numerical examples are used to validate the proposed simulation method.Keywords: cold standby system, k-out-of-n, residual life, simulation sampling
Procedia PDF Downloads 39919030 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 19319029 Design and Realization of Social Responsibility Report Writing System
Authors: Hao Qin
Abstract:
This paper proposes a guiding tool for companies to write social responsibility report by developing an applicable writing system based on analysis of its functional requirements, writing indicators and roles. The system’s operation and results concerned will be demonstrated as well.Keywords: social responsibility, report writing, system, design and realization
Procedia PDF Downloads 37319028 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 11619027 Unlocking Justice: Exploring the Power and Challenges of DNA Analysis in the Criminal Justice System
Authors: Sandhra M. Pillai
Abstract:
This article examines the relevance, difficulties, and potential applications of DNA analysis in the criminal justice system. A potent tool for connecting suspects to crime sites, clearing the innocent of wrongdoing, and resolving cold cases, DNA analysis has transformed forensic investigations. The scientific foundations of DNA analysis, including DNA extraction, sequencing, and statistical analysis, are covered in the article. To guarantee accurate and trustworthy findings, it also discusses the significance of quality assurance procedures, chain of custody, and DNA sample storage. DNA analysis has significantly advanced science, but it also brings up substantial moral and legal issues. To safeguard individual rights and uphold public confidence, privacy concerns, possible discrimination, and abuse of DNA information must be properly addressed. The paper also emphasises the effects of the criminal justice system on people and communities while highlighting the necessity of equity, openness, and fair access to DNA testing. The essay describes the obstacles and future directions for DNA analysis. It looks at cutting-edge technology like next-generation sequencing, which promises to make DNA analysis quicker and more affordable. To secure the appropriate and informed use of DNA evidence, it also emphasises the significance of multidisciplinary collaboration among scientists, law enforcement organisations, legal experts, and policymakers. In conclusion, DNA analysis has enormous potential for improving the course of criminal justice. We can exploit the potential of DNA technology while respecting the ideals of justice, fairness, and individual rights by navigating the ethical, legal, and societal issues and encouraging discussion and collaboration.Keywords: DNA analysis, DNA evidence, reliability, validity, legal frame, admissibility, ethical considerations, impact, future direction, challenges
Procedia PDF Downloads 6419026 A Case Study of Meaningful Learning in Play for Young Children
Authors: Baoliang Xu
Abstract:
The future of education should focus on creating meaningful learning for learners. Play is a basic form and an important means of carrying out kindergarten educational activities, which promotes the creation and development of meaningful learning and is of great importance in the harmonious physical and mental development of young children. Through literature research and case studies, this paper finds that: meaningful learning has the characteristics of contextuality, interaction and constructiveness; teachers should pay great attention to the guidance of children's games, fully respect children's autonomy and create a prepared game environment; children's meaningful learning exists in games and hidden in things that interest them, and "the generation of questions The "generation of questions" fuels the depth of children's meaningful learning, and teachers' professional support helps children's meaningful learning to develop continuously. In short, teachers' guidance of young children's play should be emphasized to effectively provide scaffolding instruction to promote meaningful learning in a holistic manner.Keywords: meaningful learning, young childhood, game, case study
Procedia PDF Downloads 6819025 The Development of XML Resume System in Thailand
Authors: Jarumon Nookhong, Thanakorn Uiphanit
Abstract:
This study is a research and development project which aims to develop XML Resume System to be the standard system in Thailand as well as to measure the efficiency of the XML Resume System in Thailand. This research separates into 2 stages: 1) to develop XML Document System to be the standard in Thailand, and 2) to experiment the system performance. The sample in this research is committed by 50 specialists in the field of human resources by selecting specifically. The tool that uses in this research is XML Resume System in Thailand and the performance evaluation format of system while the analysis of the data is calculated by using average and standard deviation. The result of the research found that the development of the XML Resume System that aims to be the standard system in Thailand had the result 2.67 of the average which is in a good level. The evaluation in testing the performance of the system had been done by the specialists of human resources who use the XML Resume system. When analyzing each part, it found out that the abilities according to the user’s requirement from specialists in the field of human resources, the convenience and easiness in usages, and the functional competency are respectively in a good level. The average of the ability according to the user’s need from specialists of human resources is 2.92. The average of the convenience and easiness in usages is 2.56. The average of functional competency is 2.53. These can be used as the standard effectively.Keywords: resume, XML, XML schema, computer science
Procedia PDF Downloads 40819024 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 51719023 On the Use of Machine Learning for Tamper Detection
Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode
Abstract:
The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT
Procedia PDF Downloads 15119022 Design of the Ubiquitous Cloud Learning Management System
Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema
Abstract:
This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system
Procedia PDF Downloads 51719021 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells
Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon
Abstract:
By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique
Procedia PDF Downloads 33819020 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 28919019 An Open Source Advertisement System
Authors: Pushkar Umaranikar, Chris Pollett
Abstract:
An online advertisement system and its implementation for the Yioop open source search engine are presented. This system supports both selling advertisements and displaying them within search results. The selling of advertisements is done using a system to auction off daily impressions for keyword searches. This is an open, ascending price auction system in which all accepted bids will receive a fraction of the auctioned day’s impressions. New bids in our system are required to be at least one half of the sum of all previous bids ensuring the number of accepted bids is logarithmic in the total ad spend on a keyword for a day. The mechanics of creating an advertisement, attaching keywords to it, and adding it to an advertisement inventory are described. The algorithm used to go from accepted bids for a keyword to which ads are displayed at search time is also presented. We discuss properties of our system and compare it to existing auction systems and systems for selling online advertisements.Keywords: online markets, online ad system, online auctions, search engines
Procedia PDF Downloads 32419018 Optimization and Feasibility Analysis of a PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassan T. Dorra
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand-alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand-alone systems.Keywords: wind stand-alone system, photovoltaic stand-alone system, hybrid system, optimum system sizing, feasibility, cost analysis
Procedia PDF Downloads 33819017 CO2 Gas Solubility and Foam Generation
Authors: Chanmoly Or, Kyuro Sasaki, Yuichi Sugai, Masanori Nakano, Motonao Imai
Abstract:
Cold drainage mechanism of oil production is a complicated process which involves with solubility and foaming processes. Laboratory experiments were carried out to investigate the CO2 gas solubility in hexadecane (as light oil) and the effect of depressurization processes on microbubble generation. The experimental study of sensitivity parameters of temperature and pressure on CO2 gas solubility in hexadecane was conducted at temperature of 20 °C and 50 °C and pressure ranged 2.0–7.0 MPa by using PVT (RUSKA Model 2370) apparatus. The experiments of foamy hexadecane were also prepared by depressurizing from saturated pressure of 6.4 MPa and temperature of 50 °C. The experimental results show the CO2 gas solubility in hexadecane linearly increases with increasing pressure. At pressure 4.5 MPa, CO2 gas dissolved in hexadecane 2.5 mmol.g-1 for temperature of 50 °C and 3.5 mmol.g-1 for temperature of 20 °C. The bubbles of foamy hexadecane were observed that most of large bubbles were coalesced shortly whereas the small one keeps presence. The experimental result of foamy hexadecane indicated large depressurization step (∆P) produces high quality of foam with high microbubble distribution.Keywords: CO2 gas solubility, depressurization process, foamy hexadecane, microbubble distribution
Procedia PDF Downloads 49119016 Location Tracking of Human Using Mobile Robot and Wireless Sensor Networks
Authors: Muazzam A. Khan
Abstract:
In order to avoid dangerous environmental disasters, robots are being recognized as good entrants to step in as human rescuers. Robots has been gaining interest of many researchers in rescue matters especially which are furnished with advanced sensors. In distributed wireless robot system main objective for a rescue system is to track the location of the object continuously. This paper provides a novel idea to track and locate human in disaster area using stereo vision system and ZigBee technology. This system recursively predict and updates 3D coordinates in a robot coordinate camera system of a human which makes the system cost effective. This system is comprised of ZigBee network which has many advantages such as low power consumption, self-healing low data rates and low cost.Keywords: stereo vision, segmentation, classification, human tracking, ZigBee module
Procedia PDF Downloads 492