Search results for: pesticide mixture
434 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova
Abstract:
In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases
Procedia PDF Downloads 285433 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films
Procedia PDF Downloads 166432 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method
Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi
Abstract:
Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation timeKeywords: magnetic, methyl violet, nanocomposite, photocatalytic
Procedia PDF Downloads 255431 Characteristics of Tremella fuciformis and Annulohypoxylon stygium for Optimal Cultivation Conditions
Authors: Eun-Ji Lee, Hye-Sung Park, Chan-Jung Lee, Won-Sik Kong
Abstract:
We analyzed the DNA sequence of the ITS (Internal Transcribed Spacer) region of the 18S ribosomal gene and compared it with the gene sequence of T. fuciformis and Hypoxylon sp. in the BLAST database. The sequences of collected T. fuciformis and Hypoxylon sp. have over 99% homology in the T. fuciformis and Hypoxylon sp. sequence BLAST database. In order to select the optimal medium for T. fuciformis, five kinds of a medium such as Potato Dextrose Agar (PDA), Mushroom Complete Medium (MCM), Malt Extract Agar (MEA), Yeast extract (YM), and Compost Extract Dextrose Agar (CDA) were used. T. fuciformis showed the best growth on PDA medium, and Hypoxylon sp. showed the best growth on MCM. So as to investigate the optimum pH and temperature, the pH range was set to pH4 to pH8 and the temperature range was set to 15℃ to 35℃ (5℃ degree intervals). Optimum culture conditions for the T. fuciformis growth were pH5 at 25℃. Hypoxylon sp. were pH6 at 25°C. In order to confirm the most suitable carbon source, we used fructose, galactose, saccharose, soluble starch, inositol, glycerol, xylose, dextrose, lactose, dextrin, Na-CMC, adonitol. Mannitol, mannose, maltose, raffinose, cellobiose, ethanol, salicine, glucose, arabinose. In the optimum carbon source, T. fuciformis is xylose and Hypoxylon sp. is arabinose. Using the column test, we confirmed sawdust a suitable for T. fuciformis, since the composition of sawdust affects the growth of fruiting bodies of T. fuciformis. The sawdust we used is oak tree, pine tree, poplar, birch, cottonseed meal, cottonseed hull. In artificial cultivation of T. fuciformis with sawdust medium, T. fuciformis and Hypoxylon sp. showed fast mycelial growth on mixture of oak tree sawdust, cottonseed hull, and wheat bran.Keywords: cultivation, optimal condition, tremella fuciformis, nutritional source
Procedia PDF Downloads 210430 Utilization of Sphagnum Moss as a Jeepney Emission Filter for Smoke Density Reduction
Authors: Monique Joyce L. Disamburum, Nicole C. Faustino, Ashley Angela A. Fazon, Jessie F. Rubonal
Abstract:
Traditional jeepneys contribute significantly to air pollution in the Philippines, negatively affecting both the environment and people. In response, the researchers investigated Sphagnum moss which has high adsorbent properties and can be used as a filter. Therefore, this research aims to create a muffler filter additive to reduce the smoke density emitted by traditional jeepneys. Various materials, such as moss, cornstarch, a metal pipe, bolts, and a papermaking screen frame, were gathered. The moss underwent a blending process with a cornstarch mixture until it achieved a pulp-like consistency, subsequently molded using a papermaking screen frame and left for sun drying. Following this, a metal prototype was created by drilling holes around the tumbler and inserting bolts. The mesh wire containing the filter was carefully placed into the hole, secured by two bolts. In the final phase, there were three setups, each undergoing one trial in the LTO emission testing. Each trial consisted of six rounds of purging, and after that the average smoke density was measured. According to the findings of this study, the filter aided in lowering the average smoke density. The one layer setup produced an average of 1.521, whereas the two layer setup produced an average of 1.082. Using One-Way Anova, it was demonstrated that there is a significant difference between the setups. Furthermore, the Tukey HSD Post Hoc test revealed that Setups A and C differed significantly (p = 0.04604), with Setup C being the most successful in reducing smoke density (mean difference -1.4128). Overall, the researchers came to the conclusion that employing Sphagnum moss as a filter can lower the average smoke density released by traditional jeepneys.Keywords: sphagnum moss, Jeepney filter, smoke density, Jeepney emission
Procedia PDF Downloads 52429 Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate
Authors: Abdolreza Farhadian, Anh Phan, Zahra Taheri Rizi, Elaheh Sadeh
Abstract:
The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS follows a simple, three-step process that is amenable to industrial scale production. The first two steps of the process are solvent-free, which helps reduce potential environmental impacts and makes scaling up more feasible. Additionally, the final step utilizes a water-isopropanol mixture, which is an easily accessible and cost-effective solvent system for large-scale production. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days.Keywords: solidified methane, gas storage, gas hydrates, green surfactant, gas hydrate promoter, computational simulation, sustainability
Procedia PDF Downloads 5428 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application
Authors: Adeshina Fadeyibi
Abstract:
Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging
Procedia PDF Downloads 119427 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method
Procedia PDF Downloads 288426 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 142425 Risk Issues for Controlling Floods through Unsafe, Dual Purpose, Gated Dams
Authors: Gregory Michael McMahon
Abstract:
Risk management for the purposes of minimizing the damages from the operations of dams has met with opposition emerging from organisations and authorities, and their practitioners. It appears that the cause may be a misunderstanding of risk management arising from exchanges that mix deterministic thinking with risk-centric thinking and that do not separate uncertainty from reliability and accuracy from probability. This paper sets out those misunderstandings that arose from dam operations at Wivenhoe in 2011, using a comparison of outcomes that have been based on the methodology and its rules and those that have been operated by applying misunderstandings of the rules. The paper addresses the performance of one risk-centric Flood Manual for Wivenhoe Dam in achieving a risk management outcome. A mixture of engineering, administrative, and legal factors appear to have combined to reduce the outcomes from the risk approach. These are described. The findings are that a risk-centric Manual may need to assist administrations in the conduct of scenario training regimes, in responding to healthy audit reporting, and in the development of decision-support systems. The principal assistance needed from the Manual, however, is to assist engineering and the law to a good understanding of how risks are managed – do not assume that risk management is understood. The wider findings are that the critical profession for decision-making downstream of the meteorologist is not dam engineering or hydrology, or hydraulics; it is risk management. Risk management will provide the minimum flood damage outcome where actual rainfalls match or exceed forecasts of rainfalls, that therefore risk management will provide the best approach for the likely history of flooding in the life of a dam, and provisions made for worst cases may be state of the art in risk management. The principal conclusion is the need for training in both risk management as a discipline and also in the application of risk management rules to particular dam operational scenarios.Keywords: risk management, flood control, dam operations, deterministic thinking
Procedia PDF Downloads 87424 In Vitro Antioxidant and Free Radical Scavenging Activity of Phyllanthus Emblica L. Extract
Authors: Benyapa Suksuwan
Abstract:
Introduction: Oxidative stress is identified as the root cause of the development and progression of several diseases as the disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Aim of the Study: This study focused on the antioxidant activity of polyphenols extracted from Phyllanthus Emblica L. as oxidative stress plays a vital role in developing and progressing many diseases, including cardiovascular diseases and cancer. Materials and Methods: The plant was extracted using a mixture solvent (ethyl alcohol: water in ratio 8:2). The total phenolic content of P. Emblica extract was determined using the Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE) and various antioxidant assays DPPH and ABTS radical scavenging capacity assays. Results and Discussion: The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, the IC₅₀ of P. Emblica extract via DPPH and ABTS assays were 68.10 μg/mL ± 0.455, and 49.24 μg/mL ± 0.716, respectively. Furthermore, P. Emblica extract showed antioxidant activities in a concentration-dependent manner. Vitamin C was used as a positive control in the DPPH assay, while Trolox was used as a positive control in the ABTS assay. Conclusions: In conclusion, P. Emblica extract consisted of a high amount of total phenolic content, which possesses potent antioxidant activity. However, further antioxidant activity assays using human cell lines such as SOD, ROS, and RNS scavenging assays and in vitro antioxidant experiments should be performed in order.Keywords: antioxidant, ABTS scavenging, DPPH scavenging assay, total phenol contents assay, Phyllanthus Emblica L
Procedia PDF Downloads 195423 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production
Authors: Behnam Mahdiyan Nasl
Abstract:
In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.Keywords: biogas, cheese whey, cattle manure, energy
Procedia PDF Downloads 334422 Determination of Gold in Microelectronics Waste Pieces
Authors: S. I. Usenko, V. N. Golubeva, I. A. Konopkina, I. V. Astakhova, O. V. Vakhnina, A. A. Korableva, A. A. Kalinina, K. B. Zhogova
Abstract:
Gold can be determined in natural objects and manufactured articles of different origin. The up-to-date status of research and problems of high gold level determination in alloys and manufactured articles are described in detail in the literature. No less important is the task of this metal determination in minerals, process products and waste pieces. The latters, as objects of gold content chemical analysis, are most hard-to-study for two reasons: Because of high requirements to accuracy of analysis results and because of difference in chemical and phase composition. As a rule, such objects are characterized by compound, variable and very often unknown matrix composition that leads to unpredictable and uncontrolled effect on accuracy and other analytical characteristics of analysis technique. In this paper, the methods for the determination of gold are described, using flame atomic-absorption spectrophotometry and gravimetric analysis technique. The techniques are aimed at gold determination in a solution for gold etching (KJ+J2), in the technological mixture formed after cleaning stainless steel members of vacuum-deposit installation with concentrated nitric and hydrochloric acids as well as in gold-containing powder resulted from liquid wastes reprocessing. Optimal conditions for sample preparation and analysis of liquid and solid waste specimens of compound and variable matrix composition were chosen. The boundaries of relative resultant error were determined for the methods within the range of gold mass concentration from 0.1 to 30g/dm3 in the specimens of liquid wastes and mass fractions from 3 to 80% in the specimens of solid wastes.Keywords: microelectronics waste pieces, gold, sample preparation, atomic-absorption spectrophotometry, gravimetric analysis technique
Procedia PDF Downloads 204421 Investigation into the Suitability of Aggregates for Use in Superpave Design Method
Authors: Ahmad Idris, Armaya`u Suleiman Labo, Ado Yusuf Abdulfatah, Murtala Umar
Abstract:
Super pave is the short form of Superior Performing Asphalt Pavement and represents a basis for specifying component materials, asphalt mixture design and analysis, and pavement performance prediction. This new technology is the result of long research projects conducted by the strategic Highway Research program (SHRP) of the Federal Highway Administration. This research was aimed at examining the suitability of Aggregates found in Kano for used in super pave design method. Aggregates samples were collected from different sources in Kano Nigeria and their Engineering properties, as they relate to the SUPERPAVE design requirements were determined. The average result of Coarse Aggregate Angularity in Kano was found to be 87% and 86% of one fractured face and two or more fractured faces respectively with a standard of 80% and 85% respectively. Fine Aggregate Angularity average result was found to be 47% with a requirement of 45% minimum. A flat and elongated particle which was found to be 10% has a maximum criterion of 10%. Sand equivalent was found to be 51% with the criteria of 45% minimum. Strength tests were also carried out, and the results reflect the requirements of the standards. The tests include Impact value test, Aggregate crushing value and Aggregate Abrasion tests and the results are 27.5%, 26.7% and 13% respectively with a maximum criteria of 30%. Specific gravity was also carried out and the result was found to have an average value of 2.52 with a criterion of 2.6 to 2.9 and Water absorption was found to be 1.41% with maximum criteria of 0.6%. From the study, the result of the tests indicated that the aggregates properties have met the requirements of Super pave design method based on the specifications of ASTMD 5821, ASTM D 4791, AASHTO T176, AASHTO T33 and BS815.Keywords: aggregates, construction, road design, super pave
Procedia PDF Downloads 238420 Experimental Research of Smoke Impact on the Performance of Cylindrical Eight Channel Cyclone
Authors: Pranas Baltrėnas, Dainius Paliulis
Abstract:
Cyclones are widely used for separating particles from gas in energy production objects. Efficiency of normal centrifugal air cleaning devices ranges from 85 to 90%, but weakness of many cyclones is low collection efficiency of particles less than 10 μm in diameter. Many factors have impact on cyclone efficiency – humidity, temperature, gas (air) composition, airflow velocity and etc. Many scientists evaluated only effect of origin and size of PM on cyclone efficiency. Effect of gas (air) composition and temperature on cyclone efficiency still demands contributions. Complex experimental research on efficiency of cylindrical eight-channel system with adjustable half-rings for removing fine dispersive particles (< 20 μm) was carried out. The impact of gaseous smoke components on removal of wood ashes was analyzed. Gaseous components, present in the smoke mixture, with the dynamic viscosity lower than that of same temperature air, decrease the d50 value, simultaneously increasing the overall particulate matter removal efficiency in the cyclone, i.e. this effect is attributed to CO2 and CO, while O2 and NO have the opposite effect. Air temperature influences the d50 value, an increase in air temperature yields an increase in d50 value, i.e. the overall particulate matter removal efficiency declines, the reason for this being an increasing dynamic air viscosity. At 120 °C temperature the d50 value is approximately 11.8 % higher than at air temperature of 20 °C. With an increase in smoke (gas) temperature from 20 °C to 50 °C, the aerodynamic resistance in a 1-tier eight-channel cylindrical cyclone drops from 1605 to 1380 Pa, from 1660 to 1420 Pa in a 2-tier eight-channel cylindrical cyclone, from 1715 to 1450 Pa in a 3-tier eight-channel cylindrical cyclone. The reason for a decline in aerodynamic resistance is the declining gas density. The aim of the paper is to analyze the impact of gaseous smoke components on the eight–channel cyclone with tangential inlet.Keywords: cyclone, adjustable half-rings, particulate matter, efficiency, gaseous compounds, smoke
Procedia PDF Downloads 289419 Fungal Flocculation of Single Algae Species and Mixed Algal Communities
Authors: Digby Wrede, Stephen Gray, Syed Hussainy
Abstract:
Microalgae are extremely useful organisms but notoriously hard to harvest. The use of fungal pellets has been found to be an efficient way to flocculate numerous species of algae. However, only the flocculation of single species of algae has been investigated. Algae are generally found in complex communities in the environment comprising of numerous species of algae ranging from simple single cell algae such as Chlorella to more complex or communal algae such as Dictyosphaerium. This study investigated the flocculation capabilities of Aspergillus oryzae to flocculate four species of algae; Chlorella vulgaris, Scenedesmus quadricauda, Scenedesmus acuminatus and Dictyosphaerium sp., and the algal communities in four different types of domestic effluent from a lagoon-based treatment plant; primary effluent, secondary effluent and the high rate algal pond effluent at a natural and at a lowered pH level. Spectrophotometry was used to measure the changes in algal population. C. vulgaris, S. acuminatus and S. quadricauda, had over 90% reduction of algal in suspension after 24 hours. Dictyosphaerium sp. showed a little to no removal after 24 hours. The primary, secondary, and natural pH level HRAP had roughly a 50% removal after 24 hours, the HRAP which was grown at a lower pH level had over a 90% removal after 24 hours. pH has been shown previously to affect fungal flocculation. Fungal and algae pellets have been shown to be able to treat wastewater and can be converted to biofuels in a very similar method to how algae are currently converted. The mixture of both fungi and algae has also been shown to provide a higher yield of oils then separately and are able to more efficiently treat wastewater then algae or fungi by themselves.Keywords: algae harvesting, Aspergillus oryzae, fungal flocculation, wastewater treatment
Procedia PDF Downloads 161418 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice
Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza
Abstract:
Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E
Procedia PDF Downloads 427417 Electro-Optic Parameters of Ferroelectric Particles- Liquid Crystal Composites
Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov
Abstract:
Influence of barium titanate particles on electro-optic properties of liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) with positive dielectric anisotropy and the liquid crystalline (LC) mixture Н-37 consisting of 4-methoxybezylidene-4'–butylaniline and 4-ethoxybezylidene-4'–butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles inside 5СВ and H-37 decreased the clearing temperature from 35.2 °С to 32.5°С and from 61.2 oC to 60.1oC, correspondingly. The threshold voltage of the Fredericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect of the pure 5СВ was observed at 2.1 V. Threshold voltage of the Fredericksz effect increased from 2.8 V to up 3.1 V at additive of particles into H-37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H-37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the effect of fast light modulation was studied at application of the rectangular impulse with direct bias to an electro-optical cell with the BaTiO3 particles+5CB and the pure 5CB. At this case, a rise time of the composite worsened, a decay time improved in comparison with the pure 5CB. The pecularities of electrohydrodynamic instability (EHDI) formation was also investigated into the composite with the H-37 matrix. It was found that the voltage of the EHDI formation decreased, a rise time increased and a decay time decreased in comparison with the pure H-37. First of all, experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.Keywords: liquid crystal, ferroelectric particles, composite, electro-optics
Procedia PDF Downloads 702416 Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets
Authors: Ionela-Daniela Carja, Diana Serbezeanu, Tachita Vlad-Bubulac, Corneliu Hamciuc
Abstract:
Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements.Keywords: condensed-phase mechanism, eco-friendly phosphorus flame retardant, epoxy resin, thermal stability
Procedia PDF Downloads 312415 Dietary N-6/N-3 PUFA Ratios Affect the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Colitis
Authors: Cyoung-Huei Huang, Chiu-Li Yeh, Man-Hui Pai, Sung-Ling Yeh
Abstract:
This study evaluated the effect of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups in this study. Mice were fed for 24 d with an AIN-93G diet either with soybean oil (S), a mixture of soybean oil and low fish oil content (LF) or high fish oil content (HF). The ratio of n-6/n-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups provided 2% DSS in drinking water during day 15-19. All mice drank distilled water from day 20-24 for recovery and sacrificed on day 25. The results showed that colitis resulted in higher Th1, Th2, and Th17 and lower Treg percentages in the blood. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Further, the percentages of Th1, Th2, and Th17 cells in the blood were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with n-6/n-3 PUFA ratio 2:1 had more pronounce effects than ratio 4:1. These results suggest that diets with an n-6/n-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared to the n-6/n-3 PUFA ratio 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.Keywords: inflammatory bowel disease, n-3 polyunsaturated fatty acids, helper T lymphocyte, regulatory T lymphocyte
Procedia PDF Downloads 297414 Surface Modification of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites
Authors: Januar Parlaungan Siregar, Davindra Brabu Mathivanan, Dandi Bachtiar, Mohd Ruzaimi Mat Rejab, Tezara Cionita
Abstract:
Natural fibres play a significant role in mass industries such as automotive, construction and sports. Many researchers have found that the natural fibres are the best replacement for the synthetic fibres in terms of cost, safety, and degradability due to the shortage of landfill and ingestion of non biodegradable plastic by animals. This study mainly revolved around pineapple leaf fibre (PALF) which is available abundantly in tropical countries and with excellent mechanical properties. The composite formed in this study is highly biodegradable as both fibre and matrix are both derived from natural based products. The matrix which is polylactic acid (PLA) is made from corn starch which gives the upper hand as both material are renewable resources are easier to degrade by bacteria or enzyme. The PALF is treated with different alkaline solution to remove excessive moisture in the fibre to provide better interfacial bonding with PLA. Thereafter the PALF is washed with distilled water several times before placing in vacuum oven at 80°C for 48 hours. The dried PALF later were mixed with PLA using extrusion method using fibre in percentage of 30 by weight. The temperature for all zone were maintained at 160°C with the screw speed of 50 rpm for better bonding and afterwards the products of the mixture were pelletized using pelletizer. The pellets were placed in the specimen-sized mould for hot compression under the temperature of 170°C at 5 MPa for 5 min and subsequently were cold pressed under room temperature at 5 MPa for 5 min. The specimen were tested for tensile and flexure strength according to American Society for Testing and Materials (ASTM) D638 and D790 respectively. The effect of surface modification on PALF with different alkali solution will be investigated and compared.Keywords: natural fibre, PALF, PLA, composite
Procedia PDF Downloads 300413 English Language Teachers' Perceptions of Educational Research
Authors: Pinar Sali, Esim Gursoy, Ebru Atak Damar
Abstract:
Teachers’ awareness of and involvement in educational research (ER) is regarded as an indispensable aspect of professional growth and development. It is also believed to be a catalyst for effective teaching and learning. This strong emphasis on the significance of teacher research engagement has sparked inquiry into how teachers construe ER and whether or not they practice it. However, there seems to exist a few researches on teachers’ perceptions of and experience with ER in the field of English Language Teaching (ELT). The present study thus attempts to fill this gap in the ELT literature and aims to unearth English language teachers’ perceptions of ER. Understanding these perceptions would undoubtedly aid in the development of strategies to promote teacher interest and involvement in research. The participants of the present study are 70 English language teachers in public and private schools in Turkey. A mixed-method approach has been used in the study. Both qualitative and quantitative data have been gathered by means of a questionnaire consisting of two parts. The first part of the questionnaire consists of 20 close-ended items of Teachers’ Attitude Scale Towards Educational Research (TASTER). The second part of the questionnaire has been developed by the researchers via an extensive literature review and consists of a mixture of close- and open-ended questions. In addition, 15 language teachers have been interviewed for an in-depth understanding of the results. Descriptive statistics and dual comparisons have been employed for the quantitative data, and the qualitative data have been analyzed by means of content analysis. The present study provides intriguing information as to the English language teachers’ perceptions of the usefulness and practicality of ER as well as the value they attain to it. The findings are discussed in relation to language teacher education. The research has implications for the teacher education process, teacher trainers and policy makers.Keywords: attitudes toward educational research, educational research, language teachers, teacher research
Procedia PDF Downloads 253412 Improving the Feeding Value of Straws with Pleurotus Ostreatus
Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone
Abstract:
The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi
Procedia PDF Downloads 62411 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production
Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia
Abstract:
Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models
Procedia PDF Downloads 140410 Phylogenetic Differential Separation of Environmental Samples
Authors: Amber C. W. Vandepoele, Michael A. Marciano
Abstract:
Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.Keywords: DNA isolation, geolocation, non-human, phylogenetic separation
Procedia PDF Downloads 112409 Cement Bond Characteristics of Artificially Fabricated Sandstones
Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen
Abstract:
The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing
Procedia PDF Downloads 167408 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator
Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau
Abstract:
Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.Keywords: FFFluid, dry foam, anti-vibration devices, elastomeric polymer foam
Procedia PDF Downloads 339407 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste
Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla
Abstract:
Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film
Procedia PDF Downloads 392406 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors
Authors: Girts Bumanis, Diana Bajare
Abstract:
With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.Keywords: alkaline material, buffer capacity, biogas production, bioreactors
Procedia PDF Downloads 242405 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction
Procedia PDF Downloads 96