Search results for: boundary element model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19342

Search results for: boundary element model

18232 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads

Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari

Abstract:

A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.

Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition

Procedia PDF Downloads 263
18231 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters

Authors: B. SahaRoy, T. Medhi, S. C. Saha

Abstract:

To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.

Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow

Procedia PDF Downloads 521
18230 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: pressing, notch, matrix, flow function, vortex

Procedia PDF Downloads 290
18229 Investigation the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery

Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.

Keywords: CFD, simulation, OpenFOAM, heart

Procedia PDF Downloads 148
18228 A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification

Authors: Guilherme F. Guimaraes, Alfredo R. De Faria, Ronnie R. Rego, Andre L. R. D'Oliveira

Abstract:

The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed.

Keywords: plasticity, residual stress, finite element method, manufacturing

Procedia PDF Downloads 206
18227 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design

Procedia PDF Downloads 222
18226 Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves

Authors: Aymen Laadhari

Abstract:

During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency.

Keywords: eulerian, level set, newton, valve

Procedia PDF Downloads 278
18225 Modelling of Aerosols in Absorption Column

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this, aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 244
18224 Seasonal Prevalence of Gastrointestinal Parasites and Their Association with Trace Element Contents in Sera of Sheep, Grazing Forages and Soils of Sialkot District, Punjab, Pakistan

Authors: Hafiz M. Rizwan, Muhammad S. Sajid, Zafar Iqbal, Muhammad Saqib

Abstract:

Gastro-intestinal (GI) helminths infection in sheep causes a substantial loss in terms of productivity and constitutes serious economic losses in the world. Different types of forages are rich in trace element contents and may act as a natural resource to improve the trace element deficiencies leading to immunity boost-up in general and against gastrointestinal parasitic infections in particular. In the present study, the level of trace elements (Cu, Co, Mn, Zn) determined in sera of different breeds of sheep, available feedstuffs, respective soil samples and their association with GI helminths in Sialkot district, Punjab, Pakistan. Almost similar prevalence of GI helminths was recorded (32.81%) during spring 2015 and (32.55%) during autumn 2014. The parasitic species identified from the microscopically scanned faecal samples of district Sialkot were Fasciola (F.) hepatica, F. gigantica, Haemonchus contortus, Eimeria crandallis, Gongylonema pulchrum, Oesophagostomum sp., Trichuris ovis, Strongyles sp., Cryptosporidium sp. and Trichostrongylus sp. Among variables like age, sex, and breed, only sex was found significant in district Sialkot. A significant (P < 0.05) variation in the concentration of Zn, Cu, Mn, and Co was recorded in collected forages species. Soils of grazing field showed insignificant (P > 0.05) variation among soils of different tehsils of Sialkot district. Statistically, sera of sheep showed no variation (P > 0.05) during autumn 2014, While, variation (P < 0.05) among different tehsils of Sialkot district during spring 2015 except Co. During autumn 2014 the mean concentration of Cu, Zn, and Co in sera was inversely proportional to the mean EPG of sheep while during spring 2015 only Zn was inversely proportional to the mean EPG of sheep. The trace element-rich forages preferably Zn were effective ones against helminths infection. The trace element-rich forages will be recommended for their utilization as an alternate to improve the trace element deficiencies in sheep which ultimately boost up the immunity against gastrointestinal parasitic infections.

Keywords: coprological examination, gastro-intestinal parasites, prevalence, sheep, trace elements

Procedia PDF Downloads 345
18223 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 301
18222 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 395
18221 Gender Agreement in Italian Compounds with Capo-

Authors: Irene Lami, Silvia Micheli, Jan Radimský, Joost van de Weijer

Abstract:

The present study examines gender agreement in Italian compounds with "capo-". Compounds containing "capo-" as the first element is highly productive in Italian and are attested from the earliest stages of the language, with "capo" indicating a prominent role in a group. This type of compound has become progressively more productive over time, establishing itself in the language to indicate human referents with a leadership role over someone or something belonging to both subordinate and coordinate compound categories. In light of the debates on the use of inclusive language, especially with regard to female professional titles in Italian, the gender agreement of the word "capo" is investigated, which in addition to social resistance, also encounters etymological resistance. Regarding the gender agreement of the word "capo-" as the first element of compounds, in addition to social and etymological resistances, morphological constraints must also be considered. In our experiment, 190 native informants were asked to match the gender of the given the word in a sentence, thinking of female referents. The results confirm a scalar hypothesis of gender agreement (i.e., titles traditionally attributed to women > titles traditionally attributed to men > the word "capo" in isolation > the word "capo-" as an element of subordinate compound > the word “capo-“ as an element of a coordinate compound). A significant interplay with number marking is also shown, as words are inflected in gender when the trait +plural is present. Moreover, the results show that, contrary to what is prescriptively established, speakers do inflect the word "capo" according to gender, in limited instances, even when this is found as a compound element, even though to a lesser extent than words that only have social hinders and not etymological or morphological ones. The results appear to show that, although a morphological obstacle is visible, sociolinguistic claims seem to be able to divert these obstacles. This study appears particularly suitable for replication tests over the next few decades, which, if society opens up further to claims of inclusiveness, could further corroborate this trend.

Keywords: compounds, gender inflection, Italian, morphology

Procedia PDF Downloads 58
18220 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: finite element method, flux density, transformer, voltage gradient

Procedia PDF Downloads 292
18219 Effects of Dispersion on Peristaltic Flow of a Micropolar Fluid Through a Porous Medium with Wall Effects in the Presence of Slip

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

This paper investigates the effects of slip boundary condition and wall properties on the dispersion of a solute matter in peristaltic flow of an incompressible micropolar fluid through a porous medium. Long wavelength approximation, Taylor's limiting condition and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. It is observed that peristalsis enhances dispersion. It also increases with micropolar parameter, cross viscosity coefficient, Darcy number, slip parameter and wall parameters. Further, dispersion decreases with homogenous chemical reaction rate and heterogeneous chemical reaction rate.

Keywords: chemical reaction, dispersion, peristalsis, slip condition, wall properties

Procedia PDF Downloads 466
18218 Transforming Butterworth Low Pass Filter into Microstrip Line Form at LC-Band Applications

Authors: Liew Hui Fang, Syed Idris Syed Hassan, Mohd Fareq Abd. Malek, Yufridin Wahab, Norshafinash Saudin

Abstract:

The paper implementation new approach method applied into transforming lumped element circuit into microstrip line form for Butterworth low pass filter which is operating at LC band. The filter’s lumped element circuits and microstrip line form were first designed and simulated using Advanced Design Software (ADS) to obtain the best filter characteristic based on S-parameter and implemented on FR4 substrate for order N=3,4,5,6,7,8 and 9. The importance of a new approach of transforming method as a correction factor has been considered into designed microstrip line. From ADS simulation results proved that the response of microstrip line circuit of Butterworth low pass filter with fringing correction factor has an excellent agreement with its lumped circuit. This shows that the new approach of transforming lumped element circuit into microstrip line is able to solve the conventional design of complexity size of circuit of Butterworth low pass filter (LPF) into microstrip line.

Keywords: Butterworth low pass filter, number of order, microstrip line, microwave filter, maximally flat

Procedia PDF Downloads 334
18217 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole

Authors: Basavaraj R. Endigeri, S. G. Sarganachari

Abstract:

Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 453
18216 Implementation and Validation of a Damage-Friction Constitutive Model for Concrete

Authors: L. Madouni, M. Ould Ouali, N. E. Hannachi

Abstract:

Two constitutive models for concrete are available in ABAQUS/Explicit, the Brittle Cracking Model and the Concrete Damaged Plasticity Model, and their suitability and limitations are well known. The aim of the present paper is to implement a damage-friction concrete constitutive model and to evaluate the performance of this model by comparing the predicted response with experimental data. The constitutive formulation of this material model is reviewed. In order to have consistent results, the parameter identification and calibration for the model have been performed. Several numerical simulations are presented in this paper, whose results allow for validating the capability of the proposed model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic load conditions. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated model.

Keywords: Abaqus, concrete, constitutive model, numerical simulation

Procedia PDF Downloads 364
18215 Determination of Stresses in Vlasov Beam Sections

Authors: Semih Erdogan

Abstract:

In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.

Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties

Procedia PDF Downloads 64
18214 Stress Analysis of Vertebra Using Photoelastic and Finite Element Methods

Authors: Jamal A. Hassan, Ali Q. Abdulrazzaq, Sadiq J. Abass

Abstract:

In this study, both the photoelastic, as well as the finite element methods, are used to study the stress distribution within human vertebra (L4) under forces similar to those that occur during normal life. Two & three dimensional models of vertebra were created by the software AutoCAD. The coordinates obtained were fed into a computer numerical control (CNC) tensile machine to fabricate the models from photoelastic sheets. Completed models were placed in a transmission polariscope and loaded with static force (up to 1500N). Stresses can be quantified and localized by counting the number of fringes. In both methods the Principle stresses were calculated at different regions. The results noticed that the maximum von-mises stress on the area of the extreme superior vertebral body surface and the facet surface with high normal stress (σ) and shear stress (τ). The facets and other posterior elements have a load-bearing function to help support the weight of the upper body and anything that it carries, and are also acted upon by spinal muscle forces. The numerical FE results have been compared with the experimental method using photoelasticity which shows good agreement between experimental and simulation results.

Keywords: photoelasticity, stress, load, finite element

Procedia PDF Downloads 286
18213 Buckling Analysis of Laminated Composite Plates with Central Holes

Authors: Pratyasha Patnaik, A. V. Asha

Abstract:

Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling load

Keywords: buckling, composite plates, cut-out, stress

Procedia PDF Downloads 330
18212 Numerical Investigation of Fiber-Reinforced Polymer (FRP) Panels Resistance to Blast Loads

Authors: Sameh Ahmed, Khaled Galal

Abstract:

Fiber-reinforced polymer (FRP) sandwich panels are increasingly making their way into structural engineering applications. One of these applications is the blast mitigation. This is attributed to FRP ability of absorbing considerable amount of energy relative to their low density. In this study, FRP sandwich panels are numerically studied using an explicit finite element code ANSYS AUTODYN. The numerical model is then validated with the experimental field tests in the literature. The inner core configurations that have been studied in the experimental field tests were formed from different orientations of the honeycomb shape. On the other hand, the conducted numerical study has proposed a new core configuration. The new core configuration is formulated from a combination of woven and honeycomb shapes. Throughout this study, two performance parameters are considered; the amount of the energy absorbed by the panels and the peak deformation of the panels. Following, a parametric study has been conducted with more variations of the studied parameters to examine the enhancement of the panels' performance. It is found that the numerical results have shown a good agreement with the experimental measurements. Furthermore, the analyses have revealed that using the proposed core configuration obviously enhances the FRP panels’ behavior when subjected to blast loads.

Keywords: blast load, fiber reinforced polymers, finite element modeling, sandwich panels

Procedia PDF Downloads 312
18211 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 397
18210 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems

Authors: Yasar Pala, Safa Senaysoy, Emre Calis

Abstract:

In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.

Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization

Procedia PDF Downloads 260
18209 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams

Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.

Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 508
18208 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area

Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos

Abstract:

We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.

Keywords: computational fluid dynamics, extreme events, loading, tsunami

Procedia PDF Downloads 115
18207 The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method

Authors: Orose Rugchati, Sarawut Wattanawongpitak

Abstract:

This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics.

Keywords: thermal conductivity, porcine meat, electricity, finite element method

Procedia PDF Downloads 140
18206 Designing of a Micromechanical Gyroscope with Enhanced Bandwidth

Authors: Bator Shagdyrov, Elena Zorina, Tamara Nesterenko

Abstract:

The aim of the research was to develop a design of micromechanical gyroscope, which will be used in the automotive industry, safety systems and anti-lock braking system. The research resulted in improvement of one of the technical parameters – bandwidth. In the process of mass production of micromechanical sensors, problems occurred with their use. One of the problems was a narrow bandwidth typical for the gyroscopes with a high-quality factor. A constructive way of increasing bandwidth is to use multimass systems via secondary oscillations axis. When constructing, the main task was to choose the frequency - phases and antiphases as close to each other as possible, and set the frequency of the primary oscillation evenly between them. Investigations are carried out using the T-Flex CAD finite element program and T-Flex ANALYSIS support package. The results obtained are planned to use in the future for the production of an experimental model of development and testing in practice of characteristics derived by theoretical means.

Keywords: bandwidth, inertial mass, mathematical model, micromechanical gyroscope, micromechanics

Procedia PDF Downloads 260
18205 Visualization of Energy Waves via Airy Functions in Time-Domain

Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin

Abstract:

The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.

Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators

Procedia PDF Downloads 371
18204 Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element

Authors: Mohammad Alhajeri

Abstract:

This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters.

Keywords: filtration, CFD, CCF, hot gas filtration

Procedia PDF Downloads 461
18203 Simulation the Stress Distribution of Wheel/Rail at Contact Region

Authors: Norie A. Akeel, Z. Sajuri, A. K. Ariffin

Abstract:

This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research.

Keywords: FEM, rolling contact, rail track, stress distribution, fatigue life

Procedia PDF Downloads 554