Search results for: algorithms decision tree
5347 Production and Characterization of Biochars from Torrefaction of Biomass
Authors: Serdar Yaman, Hanzade Haykiri-Acma
Abstract:
Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.Keywords: biochar, biomass, fuel upgrade, torrefaction
Procedia PDF Downloads 3805346 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 895345 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation
Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee
Abstract:
In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior
Procedia PDF Downloads 1445344 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1705343 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 1865342 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 1615341 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth
Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.Keywords: treeline, dynamic, climate, modeling
Procedia PDF Downloads 955340 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 1445339 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy
Procedia PDF Downloads 5325338 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure
Authors: V. Nagammai
Abstract:
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.Keywords: application specific noc, b* tree representation, floor planning, t tree representation
Procedia PDF Downloads 3955337 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms
Procedia PDF Downloads 4905336 A Study on Exploring Employees' Well-Being in Gaming Workplaces Prior to and after the Chinese Government Crackdowns on Corruption
Authors: Ying Chuan Wang, Zhang Tao
Abstract:
The aim of this article intends to explore the differences of well-being of employees in casino hotels before and after the Chinese government began to fight corruption. This researcher also attempted to find out the relationship between work pressure and well-being of employees in gambling workplaces before and after the Chinese government crackdowns the corruption. The category of well-being including life well-being, workplace well-being, and psychological well-being was included for analyzing well-being of employees in gaming workplaces. In addition, the psychological pressure classification was applied into this study and the Job Content Questionnaire (JCQ) would be adopted on investigating employees’ work pressure in terms of decision latitude, psychological demands, and workplace support. This study is a quantitative approach research and was conducted in March 2017. A purposive sampling was used in this study. A total of valid 339 responses were collected and the participants were casino hotel employees. The findings showed that decision latitude was significantly different prior to and after Chinese government crackdowns on corruption. Moreover, workplace support was strongly significantly related to employees’ well-being before Chinese government crackdowns. Decision latitude was strongly significantly related to employees’ well-being after Chinese government crackdowns. The findings suggest that employees’ work pressure affects their well being. In particular, because of workplace supports, it may alleviate employees’ work pressure and affect their perceptions of well-being but only prior to fighting the crackdowns. Importantly, decision latitude has become an essential factor affecting their well-being after the crackdown. It is finally hoped that the findings of this study provide suggestion to the managerial levels of hospitality industries. It is important to enhance employees’ decision latitude. Offering training courses to equip employees’ skills could be a possible way to reduce work pressure. In addition, establishing career path for the employees to pursuit is essential for their self-development and the improvement of well being. This would be crucial for casino hotels’ sustainable development and strengthening their competitiveness.Keywords: well-being, work pressure, Casino hotels’ employees, gaming workplace
Procedia PDF Downloads 2285335 Vibroacoustic Modulation with Chirp Signal
Authors: Dong Liu
Abstract:
By sending a high-frequency probe wave and a low-frequency pump wave to a specimen, the vibroacoustic method evaluates the defect’s severity according to the modulation index of the received signal. Many studies experimentally proved the significant sensitivity of the modulation index to the tiny contact type defect. However, it has also been found that the modulation index was highly affected by the frequency of probe or pump waves. Therefore, the chirp signal has been introduced to the VAM method since it can assess multiple frequencies in a relatively short time duration, so the robustness of the VAM method could be enhanced. Consequently, the signal processing method needs to be modified accordingly. Various studies utilized different algorithms or combinations of algorithms for processing the VAM signal method by chirp excitation. These signal process methods were compared and used for processing a VAM signal acquired from the steel samples.Keywords: vibroacoustic modulation, nonlinear acoustic modulation, nonlinear acoustic NDT&E, signal processing, structural health monitoring
Procedia PDF Downloads 1035334 The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach
Authors: Xizhen Zhou, Yanjie Ji
Abstract:
The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities.Keywords: charging decision, trajectory, electric vehicle, infrastructure, mixed logit
Procedia PDF Downloads 755333 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms
Authors: Cristian Pauna
Abstract:
With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies
Procedia PDF Downloads 1965332 Intellectual Property in Digital Environment
Authors: Balamurugan L.
Abstract:
Artificial intelligence (AI) and its applications in Intellectual Property Rights (IPR) has been significantly growing in recent years. In last couple of years, AI tools for Patent Research and Patent Analytics have been well-stabilized in terms of accuracy of references and representation of identified patent insights. However, AI tools for Patent Prosecution and Patent Litigation are still in the nascent stage and there may be a significant potential if such market is explored further. Our research is primarily focused on identifying potential whitespaces and schematic algorithms to automate the Patent Prosecution and Patent Litigation Process of the Intellectual Property. The schematic algorithms may assist leading AI tool developers, to explore such opportunities in the field of Intellectual Property. Our research is also focused on identification of pitfalls of the AI. For example, Information Security and its impact in IPR, and Potential remediations to sustain the IPR in the digital environment.Keywords: artificial intelligence, patent analytics, patent drafting, patent litigation, patent prosecution, patent research
Procedia PDF Downloads 705331 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1495330 The Cell Viability Study of Extracts of Bark, Flowers, Leaves and Seeds of Indian Dhak Tree, Flame of Forest
Authors: Madhavi S. Apte, Milind Bhitre
Abstract:
In pharmaceutical research and new drug development, medicinal plants have important roles. Similarly, Indian dhak tree belonging to family Fabaceae has been widely used in the traditional Indian medical system of ‘Ayurveda’ for the treatment of a variety of ailments. Hence the cell viability study was undertaken to evaluate and compare the activity of extracts of various parts like flower, bark, leaf, seed by conducting MTT assay method along with other pharmacognostical studies. The methanolic extracts of bark, flowers, leaves, and seeds were used for the study. The cell viability MTT assay was performed using the standard operating procedures. The extracts were dissolved in DMSO and serially diluted with complete medium to get the concentrations range of test concentration. DMSO concentration was kept < 0.1% in all the samples. HUVEC cells maintained in appropriate conditions were seeded in 96 well plates and treated with different concentrations of the test samples and incubated at 37°C, 5% CO₂ for 96 hours. MTT reagent was added to the wells and incubated for 4 hours; the dark blue formazan product formed by the cells was dissolved in DMSO under a safety cabinet and read at 550nm. Percentage inhibitions were calculated and plotted with the concentrations used to calculate the IC50 values. The bark, flower, leaves and seed extracts have shown the cytotoxicity activity and can be further studied for antiangiogenesis activity.Keywords: pharmacognosy, Cell viability, MTT assay, anti-angiogenesis
Procedia PDF Downloads 2995329 An Algorithm to Depreciate the Energy Utilization Using a Bio-Inspired Method in Wireless Sensor Network
Authors: Navdeep Singh Randhawa, Shally Sharma
Abstract:
Wireless Sensor Network is an autonomous technology emanating in the current scenario at a fast pace. This technology faces a number of defiance’s and energy management is one of them, which has a huge impact on the network lifetime. To sustain energy the different types of routing protocols have been flourished. The classical routing protocols are no more compatible to perform in complicated environments. Hence, in the field of routing the intelligent algorithms based on nature systems is a turning point in Wireless Sensor Network. These nature-based algorithms are quite efficient to handle the challenges of the WSN as they are capable of achieving local and global best optimization solutions for the complex environments. So, the main attention of this paper is to develop a routing algorithm based on some swarm intelligent technique to enhance the performance of Wireless Sensor Network.Keywords: wireless sensor network, routing, swarm intelligence, MPRSO
Procedia PDF Downloads 3585328 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis
Procedia PDF Downloads 3725327 Web Page Design Optimisation Based on Segment Analytics
Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi
Abstract:
In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.Keywords: analytics, design optimization, visual block trees, vision based technology
Procedia PDF Downloads 2725326 Internet of Things: Route Search Optimization Applying Ant Colony Algorithm and Theory of Computer Science
Authors: Tushar Bhardwaj
Abstract:
Internet of Things (IoT) possesses a dynamic network where the network nodes (mobile devices) are added and removed constantly and randomly, hence the traffic distribution in the network is quite variable and irregular. The basic but very important part in any network is route searching. We have many conventional route searching algorithms like link-state, and distance vector algorithms but they are restricted to the static point to point network topology. In this paper we propose a model that uses the Ant Colony Algorithm for route searching. It is dynamic in nature and has positive feedback mechanism that conforms to the route searching. We have also embedded the concept of Non-Deterministic Finite Automata [NDFA] minimization to reduce the network to increase the performance. Results show that Ant Colony Algorithm gives the shortest path from the source to destination node and NDFA minimization reduces the broadcasting storm effectively.Keywords: routing, ant colony algorithm, NDFA, IoT
Procedia PDF Downloads 4465325 Firm Level Productivity Heterogeneity and Export Behavior: Evidence from UK
Authors: Umut Erksan Senalp
Abstract:
The aim of this study is to examine the link between firm level productivity heterogeneity and firm’s decision to export. Thus, we test the self selection hypothesis which suggests only more productive firms self select themselves to export markets. We analyze UK manufacturing sector by using firm-level data for the period 2003-2011. Although our preliminary results suggest that exporters outperform non-exporters when we pool all manufacturing industries, when we examine each industry individually, we find that self-selection hypothesis does not hold for each industries.Keywords: total factor productivity, firm heterogeneity, international trade, decision to export
Procedia PDF Downloads 3675324 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 1435323 Volume Estimation of Trees: An Exploratory Study on Pterocarpus erinaceus Logging Operations within Forest Transition and Savannah Ecological Zones of Ghana
Authors: Albert Kwabena Osei Konadu
Abstract:
Pterocarpus erinaceus, also known as Rosewood, is tropical wood, endemic in forest savannah transition zones within the middle and northern portion of Ghana. Its economic viability has made it increasingly popular and in high demand, leading to widespread conservation concerns. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective, sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.Keywords: convention on international trade in endangered species, cubic volume formula, forest transition savannah zones, pterocarpus erinaceus, smallian’s volume formula, tree information form
Procedia PDF Downloads 1155322 An Integrated Framework for Seismic Risk Mitigation Decision Making
Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani
Abstract:
One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.Keywords: decision making, demolition, construction management, seismic retrofit
Procedia PDF Downloads 2435321 Understanding the Impact of Consumers’ Perceptions and Attitudes toward Eco-Friendly Hotel Recommended Advertisements on Tourist Buying Behavior
Authors: Cherouk Amr Yassin
Abstract:
This study aims to provide insight into consumer decision-making, which has become very complicated to understand and predict in the existing world of sustainable development. The deficiency of a good understanding of the tourist's perception and attitude toward sustainable development in the tourism industry may impede the ability of organizations to build a sustainable marketing orientation and may negatively influence predicted consumer response. Therefore, this research paper adds further insights into the attitude toward recommended eco-friendly hotel advertisements and their effect on the purchase intention of eco-friendly services. Structural equational modeling was completed to realize the effects of the variables under investigation. The findings revealed that consumer decision-making in choosing eco-friendly hotels is affected by the positive attitude toward sustainable development ads, influenced by informativeness and credibility as values perceived by eco-friendly hotels. This study provides practical implications for tourism, marketers, hotel managers, promoters, and consumers.Keywords: attitude, consumer behavior, consumer decision making, eco-friendly hotels, perception, the tourism industry
Procedia PDF Downloads 1165320 Brand Position Communication Channel for Rajabhat University
Authors: Narong Anurak
Abstract:
The objective of this research was to study Brand Position Communication Channel in Brand Building in Rajabhat University Affecting Decision Making of Higher Education from of qualitative research and in-depth interview with executive members Rajabhat University and also quantitative by questionnaires which are personal data of students, study of the acceptance and the finding of the information of Rajabhat University, study of pattern or Brand Position Communication Channel affecting the decision making of studying in Rajabhat University and the result of the communication in Brand Position Communication Channel. It is found that online channel and word of mount are highly important and necessary for education business since media channel is a tool and the management of marketing communication to create brand awareness, brand credibility and to achieve the high acclaim in terms of bringing out qualified graduates. Also, off-line channel can enable the institution to survive from the high competition especially in education business regarding management of the Rajabhat University. Therefore, Rajabhat University has to communicate by the various communication channel strategies for brand building for attractive student to make decision making of higher education.Keywords: brand position, communication channel, Rajabhat University, higher education
Procedia PDF Downloads 3005319 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory
Authors: Damir Latypov
Abstract:
A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory
Procedia PDF Downloads 1585318 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration
Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong
Abstract:
This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation
Procedia PDF Downloads 194