Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12437

Search results for: multi variable decision making

1157 Supply Chain Analysis with Product Returns: Pricing and Quality Decisions

Authors: Mingming Leng

Abstract:

Wal-Mart has allocated considerable human resources for its quality assurance program, in which the largest retailer serves its supply chains as a quality gatekeeper. Asda Stores Ltd., the second largest supermarket chain in Britain, is now investing £27m in significantly increasing the frequency of quality control checks in its supply chains and thus enhancing quality across its fresh food business. Moreover, Tesco, the largest British supermarket chain, already constructed a quality assessment center to carry out its gatekeeping responsibility. Motivated by the above practices, we consider a supply chain in which a retailer plays the gatekeeping role in quality assurance by identifying defects among a manufacturer's products prior to selling them to consumers. The impact of a retailer's gatekeeping activity on pricing and quality assurance in a supply chain has not been investigated in the operations management area. We draw a number of managerial insights that are expected to help practitioners judiciously consider the quality gatekeeping effort at the retail level. As in practice, when the retailer identifies a defective product, she immediately returns it to the manufacturer, who then replaces the defect with a good quality product and pays a penalty to the retailer. If the retailer does not recognize a defect but sells it to a consumer, then the consumer will identify the defect and return it to the retailer, who then passes the returned 'unidentified' defect to the manufacturer. The manufacturer also incurs a penalty cost. Accordingly, we analyze a two-stage pricing and quality decision problem, in which the manufacturer and the retailer bargain over the manufacturer's average defective rate and wholesale price at the first stage, and the retailer decides on her optimal retail price and gatekeeping intensity at the second stage. We also compare the results when the retailer performs quality gatekeeping with those when the retailer does not. Our supply chain analysis exposes some important managerial insights. For example, the retailer's quality gatekeeping can effectively reduce the channel-wide defective rate, if her penalty charge for each identified de-fect is larger than or equal to the market penalty for each unidentified defect. When the retailer imple-ments quality gatekeeping, the change in the negotiated wholesale price only depends on the manufac-turer's 'individual' benefit, and the change in the retailer's optimal retail price is only related to the channel-wide benefit. The retailer is willing to take on the quality gatekeeping responsibility, when the impact of quality relative to retail price on demand is high and/or the retailer has a strong bargaining power. We conclude that the retailer's quality gatekeeping can help reduce the defective rate for consumers, which becomes more significant when the retailer's bargaining position in her supply chain is stronger. Retailers with stronger bargaining powers can benefit more from their quality gatekeeping in supply chains.

Keywords: bargaining, game theory, pricing, quality, supply chain

Procedia PDF Downloads 279
1156 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 134
1155 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 191
1154 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack

Authors: Vincent Andrew Cappellano

Abstract:

In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.

Keywords: architecture, resiliency, availability, cyber-attack

Procedia PDF Downloads 114
1153 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 235
1152 An Investigation of Entrepreneurial Intentions, Drivers, and Challenges among Final Year Students in Jigawa State Polytechnic, Nigeria

Authors: Muhammad Umar Usman

Abstract:

This study investigates the entrepreneurial intentions, drivers and challenges of starting a business among final year students in Jigawa State polytechnic. Nigeria. Final year students of Jigawa State Polytechnic from the department of accounting, business administration and management and public administration were used as a case study. The study became necessary due to the alarming rate of graduate unemployment in Nigeria. The study adopted a holistic case study approach involving a multiple methods of questionnaires involving (182) Higher National Diploma (HND) and National Diploma (ND) final year students and a telephone interview with two lecturers teaching entrepreneurship in the college. The findings clearly indicate that exposer to entrepreneurship education increases students’ entrepreneurial intentions. The result found that desire for independence, confidence and strong intention are the most important factors that influence students’ entrepreneurial intention. The study identified 3 key drivers of students’ entrepreneurial intentions. These are to earn a living, to seek job security and provision of employment. The result again identified 4 factors namely lack of support, finance, insecurity and erratic power supply as the major challenges in starting a business in Nigeria. It was also revealed that the current entrepreneurship education programme prepares students on how to open up a business not becoming an entrepreneur. The study concluded entrepreneurship helps students toward building and driving their intention to venture into business. However, the challenges of entrepreneurship in Nigeria need to be addressed in order to enable individuals to become an entrepreneur and create employment opportunities that will lead to the development of Nigerian economy. Thus, the government should provide adequate support particularly the issue of infrastructures. The Federal Government of Nigeria in collaboration with the National Board for Technical Education should fashion out the curriculum thereby making it more practically-oriented so that students may become more interested. Polytechnics should develop an internship programme for students to work in firms so as to put theory learnt in the class to practice. Students should try to align the theory learnt in college with the practical application in dynamic economic environment. Hence, this will help in building their capabilities toward entrepreneurship development in Nigeria.

Keywords: entrepreneurial intention, entrepreneurial drivers, challenges, entrepreneurial education

Procedia PDF Downloads 302
1151 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition

Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas

Abstract:

In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.

Keywords: barley, digestive energy, horses, nutritional value, oats

Procedia PDF Downloads 206
1150 The Use of Social Media in a UK School of Pharmacy to Increase Student Engagement and Sense of Belonging

Authors: Samantha J. Hall, Luke Taylor, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman

Abstract:

Medway School of Pharmacy – a joint collaboration between the University of Kent and the University of Greenwich – is a large school of pharmacy in the United Kingdom. The school primarily delivers the accredited Master or Pharmacy (MPharm) degree programme. Reportedly, some students may feel isolated from the larger student body that extends across four separate campuses, where a diverse range of academic subjects is delivered. In addition, student engagement has been noted as being limited in some areas, as evidenced in some cases by poor attendance at some lectures. In January 2015, the University of Kent launched a new initiative dedicated to Equality, Diversity and Inclusivity (EDI). As part of this project, Medway School of Pharmacy employed ‘Student Success Project Officers’ in order to analyse past and present school data. As a result, initiatives have been implemented to i) negate disparities in attainment and ii) increase engagement, particularly for Black, Asian and Minority Ethnic (BAME) students which make up for more than 80% of the pharmacy student cohort. Social media platforms are prevalent, with global statistics suggesting that they are most commonly used by females between the ages of 16-34. Student focus groups held throughout the academic year brought to light the school’s need to use social media much more actively. Prior to the EDI initiative, social media usage for Medway School of Pharmacy was scarce. Platforms including: Facebook, Twitter, Instagram, YouTube, The Student Room and University Blogs were either introduced or rejuvenated. This action was taken with the primary aim of increasing student engagement. By using a number of varied social media platforms, the university is able to capture a large range of students by appealing to different interests. Social media is being used to disseminate important information, promote equality and diversity, recognise and celebrate student success and also to allow students to explore the student life outside of Medway School of Pharmacy. Early data suggests an increase in lecture attendance, as well as greater evidence of student engagement highlighted by recent focus group discussions. In addition, students have communicated that active social media accounts were imperative when choosing universities for 2015/16. It allows students to understand more about the University and community prior to beginning their studies. By having a lively presence on social media, the university can use a multi-faceted approach to succeed in early engagement, as well as fostering the long term engagement of continuing students.

Keywords: engagement, social media, pharmacy, community

Procedia PDF Downloads 328
1149 In the Valley of the Shadow of Death: Gossip, God, and Scapegoating in Susannah, an American Opera by Carlisle Floyd

Authors: Shirl H. Terrell

Abstract:

In the telling of mythologies, stories of cultural and religious histories, the creative arts provide an archetypal lens through which the personal and collective unconscious are viewed, thus revealing mysteries of the unknown psyche. To that end, the author of this paper, using the hermeneutic approach, proves that Carlisle Floyd’s (1955) English language opera Susannah illuminates humanity’s instinctual nature and behaviors through music, libretto, and drama. While impressive musical works such as Wagner’s Ring Cycle and Webber’s Phantom of the Opera have received extensive Jungian analyses, critics and scholars often ignore lesser esteemed works, such as Susannah, notwithstanding the fact that they have been consistently performed on the theater circuit. Such pieces, when given notice, allow viewers to grasp the soul-making depth and timeless quality of productions which may otherwise go unrecognized as culturally or psychologically significant. Although Susannah has sometimes been described as unsophisticated and simple in scope, the author demonstrates why Floyd’s 'little' opera, set in New Hope Valley, Appalachia, a cultural region in the Eastern United States known for its prevailing myths and distortions of isolation, temperament, and the judgmentally conservative behavior of its inhabitants, belongs to opera’s hallmark works. Its approach to powerful underlying archetypal themes, which give rise to the poignant and haunting depictions of the darker and destructive side of the human soul, the Shadow, provides crucial significance to the work. The Shadow’s manifestation in the form of the scapegoating complex is central to the plot of Susannah; the church’s meting out of rules, judgment, and reparation for sins point to the foreboding aspects of human behavior that evoke their intrinsic nature. The scapegoating complex is highlighted in an eight-step process gleaned from the works of Kenneth Burke and Rene Girard. In summary, through depth psychological terms and mythological motifs, the author provides an insightful approach to perceiving instinctual behaviors as they play out in an American opera that has been staged over eight-hundred times, yet, unfortunately, remains in the shadows. Susannah’s timelessness is now.

Keywords: archetypes, mythology, opera, scapegoating, Shadow, Susannah

Procedia PDF Downloads 152
1148 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance

Authors: Sanjay Shukla

Abstract:

Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.

Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus

Procedia PDF Downloads 121
1147 Precursors Signatures of Few Major Earthquakes in Italy Using Very Low Frequency Signal of 45.9kHz

Authors: Keshav Prasad Kandel, Balaram Khadka, Karan Bhatta, Basu Dev Ghimire

Abstract:

Earthquakes still exist as a threating disaster. Being able to predict earthquakes will certainly help prevent substantial loss of life and property. Perhaps, Very Low Frequency/Low Frequency (VLF/LF) signal band (3-30 kHz), which is effectively reflected from D-layer of ionosphere, can be established as a tool to predict earthquake. On May 20 and May 29, 2012, earthquakes of magnitude 6.1 and 5.8 respectively struck Emilia-Romagna of Italy. A year back, on August 24, 2016, an earthquake of magnitude 6.2 struck Central Italy (42.7060 N and 13.2230 E) at 1:36 UT. We present the results obtained from the US Navy VLF Transmitter’s NSY signal of 45.9 kHz transmitted from Niscemi, in the province of Sicily, Italy and received at the Kiel Longwave Monitor, Germany for 2012 and 2016. We analyzed the terminator times, their individual differences and nighttime fluctuation counts. We also analyzed trends, dispersion and nighttime fluctuation which gave us a possible precursors to these earthquakes. Since perturbations in VLF amplitude could also be due to various other factors like lightning, geomagnetic activities (storms, auroras etc.) and solar activities (flares, UV flux, etc.), we filtered the possible perturbations due to these agents to guarantee that the perturbations seen in VLF/LF amplitudes were as a precursor to Earthquakes. As our TRGCP path is North-south, the sunrise and sunset time in transmitter and receiver places matches making pathway for VLF/LF smoother and therefore hoping to obtain more natural data. To our surprise, we found many clear anomalies (as precursors) in terminator times 5 days to 16 days before the earthquakes. Moreover, using night time fluctuation method, we found clear anomalies 5 days to 13 days prior to main earthquakes. This exactly correlates with the findings of previous authors that ionospheric perturbations are seen few days to one month before the seismic activity. In addition to this, we were amazed to observe unexpected decrease of dispersion on certain anomalies where it was supposed to increase, thereby not supporting our finding to some extent. To resolve this problem, we devised a new parameter called dispersion nighttime (dispersion). On analyzing, this parameter decreases significantly on days of nighttime anomalies thereby supporting our precursors to much extent.

Keywords: D-layer, TRGCP (Transmitter Receiver Great Circle Path), terminator times, VLF/LF

Procedia PDF Downloads 192
1146 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 230
1145 Observation on Microbiological Profile of Type2 Diabetic Foot Ulcer and Its Antimicrobial Sensitivity Pattern in a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

Diabetes Mellitus (DM) is commonly encountered metabolic disorder in clinical practice. An estimated 25 percent of DM patients develop foot problems. Foot ulceration and infection are one of the major causes of morbidity, hospitalization or even amputation. Objective: To isolate and identify bacterial pathogens in Diabetic Foot Ulcer (DFU) and to observe its antimicrobial sensitivity pattern. Methodology: A prospective study was conducted for a period of 9 months at the Department of Microbiology, GD Hospital & Diabetes Institute, Kolkata. 75 DFU patients were recruited in the study. Specimens for microbiological studies obtained from ulcer base were examined as gram stained smear and was cultured aerobically on Nutrient agar, Blood agar and MacConkey agar plates. Antimicrobial sensitivity test was performed by disc diffusion techniques according to CLSI guidelines. Result: In this study out of 75cases, 73% (55/75) were male and 27% (20/75) were females with mean (SD) age of 51.11(±10) years. Out of 75 pus cultures, 63(84%) showed growth of microorganism making total of 81 bacterial isolates with 71.42% of monomicrobial infection and 28.57% of polymicrobial infection. Out of 81 isolates 53(65.43%) were gram negative and 21(25.92%) were gram positive. E.coli was relatively common isolate 21(26%) followed by Staphylococcus aureus 15(18.5%), Klebsiella pneumonia 14(17.28%), Pseudomonas aeruginosa 12 (14.81%), Proteus spp. 3 (3.70%), and Enterococcus faecalis 6 (7.40%). 75% of Gram-negative microorganism were extended Beta-lactamase enzyme (ESBL) producer and around 20 % of Klebsiella and Proteus spp. were carbapenemase enzyme producer. Among Gram positive, around 50% of S.aureus was MRSA, sensitive only to Vancomycin, Teicoplanin & Linezolid. Conclusion: More prevalence of monomicrobial gram-negative bacteria than gram-positive bacteria in DFU was observed. This study emphasizes that Beta-Lactam group of antibiotics should not be the empirical treatment of choice for Gram-negative isolates; instead alternatives like Carbapenems, Amikacin could be a better option. On the other hand, Vancomycin and Linezolid are preferred for most of the infection with gram-positive aerobes. Continuous surveillance of resistant bacteria is required for empiric therapy.

Keywords: antibiotic resistant, antimicrobial susceptibility, diabetic foot ulcer, surveillance

Procedia PDF Downloads 371
1144 The Effectiveness of an Educational Program on Awareness of Cancer Signs, Symptoms, and Risk Factors among School Students in Oman

Authors: Khadija Al-Hosni, Moon Fai Chan, Mohammed Al-Azri

Abstract:

Background: Several studies suggest that most school-age adolescents are poorly informed on cancer warning signs and risk factors. Providing adolescents with sufficient knowledge would increase their awareness in adulthood and improve seeking behaviors later. Significant: The results will provide a clear vision in assisting key decision-makers in formulating policies on the students' awareness programs towards cancer. So, the likelihood of avoiding cancer in the future will be increased or even promote early diagnosis. Objectives: to evaluate the effectiveness of an education program designed to increase awareness of cancer signs and symptoms risk factors, improve the behavior of seeking help among school students in Oman, and address the barriers to obtaining medical help. Methods: A randomized controlled trial with two groups was conducted in Oman. A total of 1716 students (n=886/control, n= 830/education), aged 15-17 years, at 10th and 11th grade from 12 governmental schools 3 in governorates from 20-February-2022 to 12-May-2022. Basic demographic data were collected, and the Cancer Awareness Measure (CAM) was used as the primary outcome. Data were collected at baseline (T0) and 4 weeks after (T1). The intervention group received an education program about cancer's cause and its signs and symptoms. In contrast, the control group did not receive any education related to this issue during the study period. Non-parametric tests were used to compare the outcomes between groups. Results: At T0, the lamp was the most recognized cancer warning sign in control (55.0%) and intervention (55.2%) groups. However, there were no significant changes at T1 for all signs in the control group. In contrast, all sign outcomes were improved significantly (p<0.001) in the intervention group, the highest response was unexplained pain (93.3%). Smoking was the most recognized risk factor in both groups: (82.8% for control; 84.1% for intervention) at T0. However, there was no significant change in T1 for the control group, but there was for the intervention group (p<0.001), the highest identification was smoking cigarettes (96.5%). Too scared was the largest barrier to seeking medical help by students in the control group at T0 (63.0%) and T1 (62.8%). However, there were no significant changes in all barriers in this group. Otherwise, being too embarrassed (60.2%) was the largest barrier to seeking medical help for students in the intervention group at T0 and too scared (58.6%) at T1. Although there were reductions in all barriers, significant differences were found in six of ten only (p<0.001). Conclusion: The intervention was effective in improving students' awareness of cancer symptoms, warning signs (p<0.001), and risk factors (p<0.001 reduced the most addressed barriers to seeking medical help (p<0.001) in comparison to the control group. The Ministry of Education in Oman could integrate awareness of cancer within the curriculum, and more interventions are needed on the sociological part to overcome the barriers that interfere with seeking medical help.

Keywords: adolescents, awareness, cancer, education, intervention, student

Procedia PDF Downloads 87
1143 Impact of UV on Toxicity of Zn²⁺ and ZnO Nanoparticles to Lemna minor

Authors: Gabriela Kalcikova, Gregor Marolt, Anita Jemec Kokalj, Andreja Zgajnar Gotvajn

Abstract:

Since the 90’s, nanotechnology is one of the fastest growing fields of science. Nanomaterials are increasingly becoming part of many products and technologies. Metal oxide nanoparticles are among the most used nanomaterials. Zinc oxide nanoparticles (nZnO) is widely used due to its versatile properties; it has been used in products including plastics, paints, food, batteries, solar cells and cosmetic products. It is also a very effective photocatalyst used for water treatment. Such expanding application of nZnO increases their possible occurrence in the environment. In the aquatic ecosystem nZnO interact with natural environmental factors such as UV radiation, and thus it is essential to evaluate possible interaction between them. In this context, the aim of our study was to evaluate combined ecotoxicity of nZnO and Zn²⁺ on duckweed Lemna minor in presence or absence UV. Inhibition of vegetative growth of duckweed Lemna minor was monitored over a period of 7 days in multi-well plates. After the experiment, specific growth rate was determined. ZnO nanoparticles used were of primary size 13.6 ± 1.7 nm. The test was conducted with nominal nZnO and Zn²⁺ (in form of ZnCl₂) concentrations of 1, 10, 100 mg/L. Experiment was repeated with presence of natural intensity of UV (8h UV, 10 W/m² UVA, 0.5 W/m² UVB). Concentration of Zn during the test was determined by ICP-MS. In the regular experiment (absence of UV) the specific growth rate was slightly increased by low concentrations of nZnO and Zn²⁺ in comparison to control. However, 10 and 100 mg/L of Zn²⁺ resulted in 45% and 68% inhibition of the specific growth rate, respectively. In case of nZnO both concentrations (10 and 100 mg/L) resulted in similar ~ 30% inhibition and the response was not dose-dependent. The lack of the dose-response relationship is often observed in case of nanoparticles. The possible explanation is that the physical impact prevails instead of chemical ones. In the presence of UV the toxicity of Zn²⁺ was increased and 100 mg/L of Zn²⁺ caused total inhibition of the specific growth rate (100%). On the other hand, 100 mg/L of nZnO resulted in low inhibition (19%) in comparison to the experiment without UV (30%). It is thus expected, that tested nZnO is low photoactive, but could have a good UV absorption and/or reflective properties and thus protect duckweed against UV impacts. Measured concentration of Zn in the test suspension decreased only about 4% after 168h in the case of ZnCl₂. On the other hand concentration of Zn in nZnO test decreased by 80%. It is expected that nZnO were partially dissolved in the medium and at the same time agglomeration and sedimentation of particles took place and thus the concentration of Zn at the water level decreased. Results of our study indicated, that nZnO combined with UV of natural intensity does not increase toxicity of nZnO, but slightly protect the plant against UV negative effects. When Zn²⁺ and ZnO results are compared it seems that dissolved Zn plays a central role in the nZnO toxicity.

Keywords: duckweed, environmental factors, nanoparticles, toxicity

Procedia PDF Downloads 338
1142 Solomon Islands Decentralization Efforts

Authors: Samson Viulu, Hugo Hebala, Duddley Kopu

Abstract:

Constituency Development Fund (CDF) is a controversial fund that has existed in the Solomon Islands since the early 90s to date. It is largely controversial because it is directly handled by members of parliament (MPs) of the Solomon Islands legislation chamber. It is commonly described as a political slash fund because only voters of MPs benefit from it to retain loyalty. The CDF was established by a legislative act in 2013; however, it does not have any subsidiary regulations to it, therefore, very weak governance. CDF is purposely to establish development projects in the rural areas of the Solomon Islands to spur economic growth. Although almost USD500M was spent in CDF in the last decade, there has been no growth in the economy of the Solomon Islands; rather, a regress. Solomon Islands has now formulated a first home-grown policy aimed at guiding the overall development of the fifty constituencies, improving delivery mechanisms of the CDF, and strengthening its governance through the regulation of the CDF Act 2013. The Solomon Islands Constituency Development Policy is the first for the country since gaining independence in 1978 and gives strong emphasis on a cross-sectoral approach through effective partnerships and collaborations and decentralizing government services to the isolated rural areas of the country. The new policy is driving the efforts of the political government to decentralize government services to isolated rural communities to encourage the participation of rural dwellers in economic activities. The decentralization will see the establishment of constituency offices within all constituencies and the piloting of townships in constituencies that have met the statutory requirements of the state. It also encourages constituencies to become development agents of the national government than being mere political boundaries. The decentralization will go in line with the establishment of the Solomon Islands Special Economic Zones (SEZ), where investors will be given special privileges and exemptions from government taxes and permits to attract tangible development to occur in rural constituencies. The design and formulation of the new development policy are supported by the UNDP office in the Solomon Islands. The new policy is promoting a reorientation on the allocation of resources more toward the productive and resource sectors, making access to finance easier for entrepreneurs and encouraging growth in rural entrepreneurship in the fields of agriculture, fisheries, down streaming, and tourism across the Solomon Islands. This new policy approach will greatly assist the country to graduate from the least developed countries status in a few years’ time.

Keywords: decentralization, constituency development fund, Solomon Islands constituency development policy, partnership, entrepreneurship

Procedia PDF Downloads 90
1141 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis

Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed

Abstract:

New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.

Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity

Procedia PDF Downloads 460
1140 Normal Hematopoietic Stem Cell and the Toxic Effect of Parthenolide

Authors: Alsulami H., Alghamdi N., Alasker A., Almohen N., Shome D.

Abstract:

Most conventional chemotherapeutic agents which are used for the treatment of cancers not only eradicate cancer cells but also affect normal hematopoietic Stem cells (HSCs) that leads to severe pancytopenia during treatment. Therefore, a need exists for novel approaches to treat cancer without or with minimum effect on normal HSCs. Parthenolide (PTL), a herbal product occurring naturally in the plant Feverfew, is a potential new chemotherapeutic agent for the treatment of many cancers such as acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). In this study we investigated the effect of different PTL concentrations on the viability of normal HSCs and also on the ability of these cells to form colonies after they have been treated with PTL in vitro. Methods: In this study, 24 samples of bone marrow and cord blood were collected with consent, and mononuclear cells were separated using density gradient separation. These cells were then exposed to various concentrations of PTL for 24 hours. Cell viability after culture was determined using 7ADD in a flow cytometry test. Additionally, the impact of PTL on hematopoietic stem cells (HSCs) was evaluated using a colony forming unit assay (CFU). Furthermore, the levels of NFҝB expression were assessed by using a PE-labelled anti-pNFκBP65 antibody. Results: this study showed that there was no statistically significant difference in the percentage of cell death between untreated and PTL treated cells with 5 μM PTL (p = 0.7), 10 μM PTL (p = 0.4) and 25 μM (p = 0.09) respectively. However, at higher doses, PTL caused significant increase in the percentage of cell death. These results were significant when compared to untreated control (p < 0.001). The response of cord blood cells (n=4) on the other hand was slightly different from that for bone marrow cells in that the percentage of cell death was significant at 100 μM PTL. Therefore, cord blood cells seemed more resistant than bone marrow cells. Discussion &Conclusion: At concentrations ≤25 μM PTL has a minimum or no effect on HSCs in vitro. Cord blood HSCs are more resistant to PTL compared to bone marrow HSCs. This could be due to the higher percentage of T-lymphocytes, which are resistant to PTL, in CB samples (85% in CB vs. 56% in BM. Additionally, CB samples contained a higher proportion of CD34+ cells, with 14.5% of brightly CD34+ cells compared to only 1% in normal BM. These bright CD34+ cells in CB were mostly negative for early-stage stem cell maturation antigens, making them young and resilient to oxidative stress and high concentrations of PTL.

Keywords: stem cell, parthenolide, NFKB, CLL

Procedia PDF Downloads 55
1139 Consumer Preferences Concerning Food from Carob: A Survey in Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: The nutritional benefits of eating carob are many and important for the human organism, as it is a food rich in carbohydrates and low in fat and contains multiple nutrients, making it a "superfood". Within the framework of the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region of Crete, a second-grade local self-government authority, with the collaboration of the University of Crete and of the Hellenic Mediterranean University, an online survey was carried out with the aim of evaluating dietary habits and views related to the consumption of carob and its products in a sample of local residents. Results and Conclusions: Of the 351 participants, 259 (73.8%) stated that they consume carob products, and 26.2% stated that they do not. Difficult access and limited availability of carob-food products (33.7%), high price (20.7%), and difficulties of use and preparation (15.2%) were cited as the main reasons for non-consumption. Other reasons, to a lesser extent, concern the taste, especially the sweet aftertaste of some products. Concerning the behavior and eating habits related to the consumption of carob products (n=259), 57.9% of the sample report that they buy carob products "sometimes"; 21.2% report "often"; 19.7% report "rarely", and a very small percentage of 1.2% report "constantly". With reference to the reasons for choosing carob products, the participants mention the main reason for their high nutritional value (51.7%), followed by 32.4% of nutritional claims and health claims, and the organoleptic characteristics (10.8%). Other positive factors are the final price of the product, the ease of use, and the respect for the local environment and producers. Some bakery products show the highest percentage of consumption among carob-food consumers, mainly in the form of rusks (86.1%) and breadsticks (70.3%). They are followed, in descending order, by bread (63.3%), toast (52.1%), and flour (50.6%). More specifically: 40.5% consume carob rusks less than once a month; 22% consume less than once a week; up to twice a week 12.4%; 6.6%, consume rusks 3 to 4 times a week, and daily 3.9%. It is worth mentioning that a high percentage of consumers of carob products recommend the consumption to their family and friends. Only a small percentage, in the range of 5%, does not recommend the consumption of carob products in their close family/social circle. The main motivating factors for the consumption of carob products are the expected effects they may have on health (74.1%) and the organoleptic characteristics with a percentage of 21.6%.

Keywords: food, consumer, preferences, carob, Crete, Greece

Procedia PDF Downloads 68
1138 Technology, Ethics and Experience: Understanding Interactions as Ethical Practice

Authors: Joan Casas-Roma

Abstract:

Technology has become one of the main channels through which people engage in most of their everyday activities; from working to learning, or even when socializing, technology often acts as both an enabler and a mediator of such activities. Moreover, the affordances and interactions created by those technological tools determine the way in which the users interact with one another, as well as how they relate to the relevant environment, thus favoring certain kinds of actions and behaviors while discouraging others. In this regard, virtue ethics theories place a strong focus on a person's daily practice (understood as their decisions, actions, and behaviors) as the means to develop and enhance their habits and ethical competences --such as their awareness and sensitivity towards certain ethically-desirable principles. Under this understanding of ethics, this set of technologically-enabled affordances and interactions can be seen as the possibility space where the daily practice of their users takes place in a wide plethora of contexts and situations. At this point, the following question pops into mind: could these affordances and interactions be shaped in a way that would promote behaviors and habits basedonethically-desirable principles into their users? In the field of game design, the MDA framework (which stands for Mechanics, Dynamics, Aesthetics) explores how the interactions enabled within the possibility space of a game can lead to creating certain experiences and provoking specific reactions to the players. In this sense, these interactions can be shaped in ways thatcreate experiences to raise the players' awareness and sensitivity towards certain topics or principles. This research brings together the notions of technological affordances, the notions of practice and practical wisdom from virtue ethics, and the MDA framework from game design in order to explore how the possibility space created by technological interactions can be shaped in ways that enable and promote actions and behaviors supporting certain ethically-desirable principles. When shaped accordingly, interactions supporting certain ethically-desirable principlescould allow their users to carry out the kind of practice that, according to virtue ethics theories, provides the grounds to develop and enhance their awareness, sensitivity, and ethical reasoning capabilities. Moreover, and because ethical practice can happen collaterally in almost every context, decision, and action, this additional layer could potentially be applied in a wide variety of technological tools, contexts, and functionalities. This work explores the theoretical background, as well as the initial considerations and steps that would be needed in order to harness the potential ethically-desirable benefits that technology can bring, once it is understood as the space where most of their users' daily practice takes place.

Keywords: ethics, design methodology, human-computer interaction, philosophy of technology

Procedia PDF Downloads 162
1137 Chain Networks on Internationalization of SMEs: Co-Opetition Strategies in Agrifood Sector

Authors: Emilio Galdeano-Gómez, Juan C. Pérez-Mesa, Laura Piedra-Muñoz, María C. García-Barranco, Jesús Hernández-Rubio

Abstract:

The situation in which firms engage in simultaneous cooperation and competition with each other is a phenomenon known as co-opetition. This scenario has received increasing attention in business economics and management analyses. In the domain of supply chain networks and for small and medium-sized enterprises, SMEs, these strategies are of greater relevance given the complex environment of globalization and competition in open markets. These firms face greater challenges regarding technology and access to specific resources due to their limited capabilities and limited market presence. Consequently, alliances and collaborations with both buyers and suppliers prove to be key elements in overcoming these constraints. However, rivalry and competition are also regarded as major factors in successful internationalization processes, as they are drivers for firms to attain a greater degree of specialization and to improve efficiency, for example enabling them to allocate scarce resources optimally and providing incentives for innovation and entrepreneurship. The present work aims to contribute to the literature on SMEs’ internationalization strategies. The sample is constituted by a panel data of marketing firms from the Andalusian food sector and a multivariate regression analysis is developed, measuring variables of co-opetition and international activity. The hierarchical regression equations method has been followed, thus resulting in three estimated models: the first one excluding the variables indicative of channel type, while the latter two include the international retailer chain and wholesaler variable. The findings show that the combination of several factors leads to a complex scenario of inter-organizational relationships of cooperation and competition. In supply chain management analyses, these relationships tend to be classified as either buyer-supplier (vertical level) or supplier-supplier relationships (horizontal level). Several buyers and suppliers tend to participate in supply chain networks, and in which the form of governance (hierarchical and non-hierarchical) influences cooperation and competition strategies. For instance, due to their market power and/or their closeness to the end consumer, some buyers (e.g. large retailers in food markets) can exert an influence on the selection and interaction of several of their intermediate suppliers, thus endowing certain networks in the supply chain with greater stability. This hierarchical influence may in turn allow these suppliers to develop their capabilities (e.g. specialization) to a greater extent. On the other hand, for those suppliers that are outside these networks, this environment of hierarchy, characterized by a “hub firm” or “channel master”, may provide an incentive for developing their co-opetition relationships. These results prove that the analyzed firms have experienced considerable growth in sales to new foreign markets, mainly in Europe, dealing with large retail chains and wholesalers as main buyers. This supply industry is predominantly made up of numerous SMEs, which has implied a certain disadvantage when dealing with the buyers, as negotiations have traditionally been held on an individual basis and in the face of high competition among suppliers. Over recent years, however, cooperation among these marketing firms has become more common, for example regarding R&D, promotion, scheduling of production and sales.

Keywords: co-petition networks, international supply chain, maketing agrifood firms, SMEs strategies

Procedia PDF Downloads 82
1136 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce

Authors: Heiko Diefenbach, Christoph H. Glock

Abstract:

Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.

Keywords: an aging workforce, error prevention, order picking, storage assignment

Procedia PDF Downloads 208
1135 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 90
1134 Effect of Celebrity Endorsements and Social Media Influencers on Brand Loyalty: A Comparative Study

Authors: Dhruv Saini, Megha Sharma, Sharad Gupta

Abstract:

This research is showing the use of celebrity endorsement and social media influencers and how they help in enhancing the brand loyalty of the consumers. The study aims at keeping brand image of the brand as the link between the two. However, choosing the right celebrity or social media influencer is not an easy task and it is very essential for a brand to select the right ambassador for advertising their products and for selling the product to the ultimate consumer. The purpose of the study is to create a relationship of Celebrity endorsement with brand image and with brand loyalty and creating a relationship of Social media influencers with brand image and with brand loyalty and then making a comparison between the two by measuring the effects of both simultaneously. And then by analyzing which among the two has a greater impact on brand loyalty of the consumers. The study mainly focuses on four major variables namely Celebrity endorsement, Social media influencers, Brand image and Brand loyalty. The study also focuses on interdependence and relationships that these variables have with each other and how they are linked with each other. The study also aims at looking which among Celebrity endorsement and Social media influencer has a greater impact on increasing or enhancing the loyalty for a brand. Earlier celebrity endorsers had a major impact on brand loyalty of the consumers but with time social media influencers are also playing a very vital role in impacting the brand loyalty of the consumers and are giving a fight to the celebrity endorsers as well. Also, Brand image also has a very vital role to play in enhancing the brand loyalty of a brand in the minds of the consumers as a well-known and a better perception of a brand leads to retention of more and more consumers. Also, both Celebrity endorsement and Social media influencers are two-way swords as both have a number of positives and a number of negatives as well, so these are to be compared keeping in mind their adverse effects. Examination of the current market situation has shown that the recommendations of celebrities when properly integrated by comparing product strengths. Advertisers agree that celebrity authorization does not guarantee sales but it can create buzz and make the consumer feel better by-product, which is also what customers should expect as a real star by delivering the promise. On the other hand, depending on the results of the studies, there should be a variety of conclusions planned. Some of the influential people on social media had a positive impact on the product portrait. One of the conclusions is that the product image had a positive impact on consumers. Moreover, the results of the following study states that the most influential influencers consumers in their intended purpose of the purchase, but instead produced a positive result indirectly with Brand image which would further lead to brand loyalty .

Keywords: brand image, brand loyalty, celebrity endorsement, social media influencer

Procedia PDF Downloads 199
1133 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 74
1132 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems

Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt

Abstract:

Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.

Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient

Procedia PDF Downloads 82
1131 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.

Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling

Procedia PDF Downloads 92
1130 Integrating Participatory Action and Arts-Based Research: A Methodology for Investigating Generative AI in Elementary Art Education

Authors: Jihane Mossalim

Abstract:

This study proposes a methodological framework that combines Participatory Action Research (PAR) with Arts-Based Research (ABR) to explore the potential of generative AI in elementary art education. By integrating PAR, this framework emphasizes elementary school students’ active participation as co-researchers, engaging with AI technologies and reflecting on their creative journeys. PAR’s iterative cycles of planning, action, observation, and reflection provide a solid structure for involving children in the research process, ensuring that the study is inclusive and reflective of the children’s perspectives. Arts-Based Research, on the other hand, allows for the exploration of AI not just as a tool but as a medium of creative expression. ABR’s emphasis on visual, performative, and creative outputs complements PAR’s inclusive approach, offering a dynamic and flexible way of studying the intersection of technology and art in educational contexts. This combination is particularly valuable as it encourages students to express their ideas and emotions through art, making the learning process more engaging and personally meaningful. Despite the recognized benefits of both PAR and ABR, there remains a notable gap in research that applies these methodologies in combination with elementary school students, particularly in the context of emerging technologies like generative AI. Addressing this gap is crucial, as integrating these approaches can lead to more inclusive and innovative educational practices that cater to the diverse needs of young learners. This chapter seeks to demonstrate how integrating PAR and ABR can empower young learners, giving them a voice in the research process while enriching their creative and critical thinking skills. This chapter will develop a methodology that integrates both theoretical and practical aspects of PAR and ABR, highlighting the challenges and opportunities that emerge when these approaches are integrated. It will also discuss how to adapt these methods for research in the elementary art education, providing a foundation for future inquiry. Further, the chapter will focus on situating these methodological developments in relation to a study that seeks to understand the potential of generative AI in fostering creativity, collaboration, and critical thinking among young learners. Ultimately, this work aims to provide a pioneering example that inspires further exploration and development of educational practices in the digital age.

Keywords: participatory action research, arts-based research, generative AI, elementary art education

Procedia PDF Downloads 31
1129 Secondhand Clothing and the Future of Fashion

Authors: Marike Venter de Villiers, Jessica Ramoshaba

Abstract:

In recent years, the fashion industry has been associated with the exploitation of both people and resources. This is largely due to the emergence of the fast fashion concept, which entails rapid and continual style changes where clothes quickly lose their appeal, become out-of-fashion, and are then disposed of. This cycle often entails appalling working conditions in sweatshops with low wages, child labor, and a significant amount of textile waste that ends up in landfills. Although the awareness of the negative implications of ‘mindless fashion production and consumption’ is growing, fast fashion remains to be a popular choice among the youth. This is especially prevalent in South Africa, a poverty-stricken country where a vast number of young adults are unemployed and living in poverty. Despite being in poverty, the celebrity conscious culture and fashion products frequently portrayed on the growing intrusive social media platforms in South Africa pressurizes the consumers to purchase fashion and luxury products. Young adults are therefore more vulnerable to the temptation to purchase fast fashion products. A possible solution to the detrimental effects that the fast fashion industry has on the environment is the revival of the secondhand clothing trend. Although the popularity of secondhand clothing has gained momentum among selected consumer segments, the adoption rate of such remains slow. The main purpose of this study was to explore consumers’ perceptions of the secondhand clothing trend and to gain insight into factors that inhibit the adoption of secondhand clothing. This study also aimed to investigate whether consumers are aware of the negative implications of the fast fashion industry and their likelihood to shift their clothing purchases to that of secondhand clothing. By means of a quantitative study, fifty young females were asked to complete a semi-structured questionnaire. The researcher approached females between the ages of 18 and 35 in a face-to-face setting. The results indicated that although they had an awareness of the negative consequences of fast fashion, they lacked detailed insight into the pertinent effects of fast fashion on the environment. Further, a number of factors inhibit their decision to buy from secondhand stores: firstly, the accessibility to the latest trends was not always available in secondhand stores; secondly, the convenience of shopping from a chain store outweighs the inconvenience of searching for and finding a secondhand store; and lastly, they perceived secondhand clothing to pose a hygiene risk. The findings of this study provide fashion marketers, and secondhand clothing stores, with insight into how they can incorporate the secondhand clothing trend into their strategies and marketing campaigns in an attempt to make the fashion industry more sustainable.

Keywords: eco-friendly fashion, fast fashion, secondhand clothing, eco-friendly fashion

Procedia PDF Downloads 136
1128 Exploring the Dose-Response Association of Lifestyle Behaviors and Mental Health among High School Students in the US: A Secondary Analysis of 2021 Adolescent Behaviors and Experiences Survey Data

Authors: Layla Haidar, Shari Esquenazi-Karonika

Abstract:

Introduction: Mental health includes one’s emotional, psychological, and interpersonal well-being; it ranges from “good” to “poor” on a continuum. At the individual-level, it affects how a person thinks, feels, and acts. Moreover, it determines how they cope with stress, relate to others, and interface with their surroundings. Research has yielded that mental health is directly related with short- and long-term physical health (including chronic disease), health risk behaviors, education-level, employment, and social relationships. As is the case with physical conditions like diabetes, heart disease, and cancer, mitigating the behavioral and genetic risks of debilitating mental health conditions like anxiety and depression can nurture a healthier quality of mental health throughout one’s life. In order to maximize the benefits of prevention, it is important to identify modifiable risks and develop protective habits earlier in life. Methods: The Adolescent Behaviors and Experiences Survey (ABES) dataset was used for this study. The ABES survey was administered to high school students (9th-12th grade) during January 2021- June 2021 by the Centers for Disease Control and Prevention (CDC). The data was analyzed to identify any associations between feelings of sadness, hopelessness, or increased suicidality among high school students with relation to their participation on one or more sports teams and their average daily consumed screen time. Data was analyzed using descriptive and multivariable analytic techniques. A multinomial logistic regression of each variable was conducted to examine if there was an association, while controlling for grade-level, sex, and race. Results: The findings from this study are insightful for administrators and policymakers who wish to address mounting concerns related to student mental health. The study revealed that compared to a student who participated on zero sports teams, students who participated in 1 or more sports teams showed a significantly increased risk of depression (p<0.05). Conversely, the rate of depression in students was significantly less in those who consumed 5 or more hours of screen time per day, compared to those who consumed less than 1 hour per day of screen time (p<0.05). Conclusion: These findings are informative and highlight the importance of understanding the nuances of student participation on sports teams (e.g., physical exertion, social dynamics of team, and the level of competitiveness within the sport). Likewise, the context of an individual’s screen time (e.g., social media, engaging in team-based video games, or watching television) can inform parental or school-based policies about screen time activity. Although physical activity has been proven to be important for emotional and physical well-being of youth, playing on multiple teams could have negative consequences on the emotional state of high school students potentially due to fatigue, overtraining, and injuries. Existing literature has highlighted the negative effects of screen time; however, further research needs to consider the type of screen-based consumption to better understand its effects on mental health.

Keywords: behavioral science, mental health, adolescents, prevention

Procedia PDF Downloads 111