Search results for: supply chain models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10052

Search results for: supply chain models

8972 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis

Authors: Touila Ahmed, Elie Louis, Hamza Gharbi

Abstract:

State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.

Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision

Procedia PDF Downloads 191
8971 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 133
8970 Text Similarity in Vector Space Models: A Comparative Study

Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge

Abstract:

Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.

Keywords: big data, patent, text embedding, text similarity, vector space model

Procedia PDF Downloads 173
8969 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses

Authors: Cesar Torres, Robert Briber, Nam Sun Wang

Abstract:

Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.

Keywords: contact lenses, drug delivery, controlled release, ionic surfactant

Procedia PDF Downloads 141
8968 Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification

Authors: Mahdi Golriz

Abstract:

The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE.

Keywords: linear low-density polyethylene, peroxide modification, long-chain branching, rheological method

Procedia PDF Downloads 152
8967 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 167
8966 Hand Motion and Gesture Control of Laboratory Test Equipment Using the Leap Motion Controller

Authors: Ian A. Grout

Abstract:

In this paper, the design and development of a system to provide hand motion and gesture control of laboratory test equipment is considered and discussed. The Leap Motion controller is used to provide an input to control a laboratory power supply as part of an electronic circuit experiment. By suitable hand motions and gestures, control of the power supply is provided remotely and without the need to physically touch the equipment used. As such, it provides an alternative manner in which to control electronic equipment via a PC and is considered here within the field of human computer interaction (HCI).

Keywords: control, hand gesture, human computer interaction, test equipment

Procedia PDF Downloads 313
8965 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 83
8964 Risk, Capital Buffers, and Bank Lending: The Adjustment of Euro Area Banks

Authors: Laurent Maurin, Mervi Toivanen

Abstract:

This paper estimates euro area banks’ internal target capital ratios and investigates whether banks’ adjustment to the targets have an impact on credit supply and holding of securities during the financial crisis in 2005-2011. Using data on listed banks and country-specific macro-variables a partial adjustment model is estimated in a panel context. The results indicate, firstly, that an increase in the riskiness of banks’ balance sheets influences positively on the target capital ratios. Secondly, the adjustment towards higher equilibrium capital ratios has a significant impact on banks’ assets. The impact is found to be more size-able on security holdings than on loans, thereby suggesting a pecking order.

Keywords: Euro area, capital ratios, credit supply, partial adjustment model

Procedia PDF Downloads 446
8963 Bridging the Gap between Different Interfaces for Business Process Modeling

Authors: Katalina Grigorova, Kaloyan Mironov

Abstract:

The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.

Keywords: business process modeling, business process modeling standards, workflow patterns, converting models

Procedia PDF Downloads 582
8962 Control Algorithm Design of Single-Phase Inverter For ZnO Breakdown Characteristics Tests

Authors: Kashif Habib, Zeeshan Ayyub

Abstract:

ZnO voltage dependent resistor was widely used as components of the electrical system for over-voltage protection. It has a wide application prospect in superconducting energy-removal, generator de-excitation, overvoltage protection of electrical & electronics equipment. At present, the research for the application of ZnO voltage dependent resistor stop, it uses just in the field of its nonlinear voltage current characteristic and overvoltage protection areas. There is no further study over the over-voltage breakdown characteristics, such as the combustion phenomena and the measure of the voltage/current when it breakdown, and the affect to its surrounding equipment. It is also a blind spot in its application. So, when we do the feature test of ZnO voltage dependent resistor, we need to design a reasonable test power supply, making the terminal voltage keep for sine wave, simulating the real use of PF voltage in power supply conditions. We put forward the solutions of using inverter to generate a controllable power. The paper mainly focuses on the breakdown characteristic test power supply of nonlinear ZnO voltage dependent resistor. According to the current mature switching power supply technology, we proposed power control system using the inverter as the core. The power mainly realize the sin-voltage output on the condition of three-phase PF-AC input, and 3 control modes (RMS, Peak, Average) of the current output. We choose TMS320F2812M as the control part of the hardware platform. It is used to convert the power from three-phase to a controlled single-phase sin-voltage through a rectifier, filter, and inverter. Design controller produce SPWM, to get the controlled voltage source via appropriate multi-loop control strategy, while execute data acquisition and display, system protection, start logic control, etc. The TMS320F2812M is able to complete the multi-loop control quickly and can be a good completion of the inverter output control.

Keywords: ZnO, multi-loop control, SPWM, non-linear load

Procedia PDF Downloads 324
8961 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 726
8960 Advanced Fuzzy Control for a Doubly Fed Induction Generator in Wind Energy Conversion Systems

Authors: Santhosh Kumat T., Priya E.

Abstract:

The control of a doubly fed induction generator by fuzzy is described. The active and reactive power can be controlled by rotor and grid side converters with fuzzy controller. The main objective is to maintain constant voltage and frequency at the output of the generator. However the Line Side Converter (LSC) can be controlled to supply up to 50% of the required reactive current. When the crowbar is not activated the DFIG can supply reactive power from the rotor side through the machine as well as through the LSC.

Keywords: Doubly Fed Induction Generator (DFIG), Rotor Side Converter (RSC), Grid Side Converter (GSC), Wind Energy Conversion Systems (WECS)

Procedia PDF Downloads 586
8959 Hybrid Project Management Model Based on Lean and Agile Approach

Authors: Fatima-Zahra Eddoug, Jamal Benhra, Rajaa Benabbou

Abstract:

Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project.

Keywords: agility, hybrid project management, lean, scrum

Procedia PDF Downloads 137
8958 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces

Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech

Abstract:

Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.

Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate

Procedia PDF Downloads 250
8957 Sustainability and Clustering: A Bibliometric Assessment

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner, David Gabriel F. Barros

Abstract:

Review researches are useful in terms of analysis of research problems. Between the types of review documents, we commonly find bibliometric studies. This type of application often helps the global visualization of a research problem and helps academics worldwide to understand the context of a research area better. In this document, a bibliometric view surrounding clustering techniques and sustainability problems is presented. The authors aimed at which issues mostly use clustering techniques, and, even which sustainability issue would be more impactful on today’s moment of research. During the bibliometric analysis, we found ten different groups of research in clustering applications for sustainability issues: Energy; Environmental; Non-urban planning; Sustainable Development; Sustainable Supply Chain; Transport; Urban Planning; Water; Waste Disposal; and, Others. And, by analyzing the citations of each group, we discovered that the Environmental group could be classified as the most impactful research cluster in the area mentioned. Now, after the content analysis of each paper classified in the environmental group, we found that the k-means technique is preferred for solving sustainability problems with clustering methods since it appeared the most amongst the documents. The authors finally conclude that a bibliometric assessment could help indicate a gap of researches on waste disposal – which was the group with the least amount of publications – and the most impactful research on environmental problems.

Keywords: bibliometric assessment, clustering, sustainability, territorial partitioning

Procedia PDF Downloads 107
8956 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements

Authors: Sabiu Bala Muhammad, Rosli Saad

Abstract:

Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.

Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity

Procedia PDF Downloads 273
8955 Face Shield Design with Additive Manufacturing Practice Combating COVID-19 Pandemic

Authors: May M. Youssef

Abstract:

This article introduces a design, for additive manufacturing technology, face shield as Personal Protective Equipment from the respiratory viruses such as coronavirus 2. The face shields help to reduce ocular exposure and play a vital role in diverting away from the respiratory COVID-19 air droplets around the users' face. The proposed face shield comprises three assembled polymer parts. The frame with a transparency overhead projector sheet visor is suitable for frontline health care workers and ordinary citizens. The frame design allows tightening the shield around the user’s head and permits rubber elastic straps to be used if required. That ergonomically designed with a unique face mask support used in case of wearing extra protective mask was created using computer aided design (CAD) software package. The finite element analysis (FEA) structural verification of the proposed design is performed by an advanced simulation technique. Subsequently, the prototype model was fabricated by a 3D printing using Fused Deposition Modeling (FDM) as a globally developed face shield product. This study provides a different face shield designs for global production, which showed to be suitable and effective toward supply chain shortages and frequent needs of personal protective goods during coronavirus disease and similar viruses.

Keywords: additive manufacturing, Coronavirus-19, face shield, personal protective equipment, 3D printing

Procedia PDF Downloads 200
8954 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques

Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa

Abstract:

This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).

Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences

Procedia PDF Downloads 346
8953 The Batteryless Wi-Fi Backscatter System and Method for Improving the Transmission Range

Authors: Young-Min Ko, Seung-Jun Yu, Seongjoo Lee, Hyoung-Kyu Song

Abstract:

The Internet of things (IoT) system has attracted attention. IoT is a technology to connect all the objects to the internet as well as computer. IoT makes it possible for providing more data interoperability methods for an application purpose. Among the IoT technology, the research of devices so that they can communicate without power supply has been actively conducted. Batteryless system permits us to communicate without power supply devices. In this paper, batteryless backscatter system is used as a tag. And mobile devices which are embedded wireless fidelity (Wi-Fi) chipset are used as a reader. The backscatter tag can be obtained Internet connectivity from the reader. Conventional Wi-Fi backscatter system has limitation in the transmission range. In this paper, the proposed algorithm can be obtained improved reliability as well as overcoming the limitation about transmission range.

Keywords: Ambient RF, Backscatter, Batteryless communication, Energy-harvesting, IoT, RFID, Tag, Wi-Fi

Procedia PDF Downloads 387
8952 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid

Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu

Abstract:

The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.

Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction

Procedia PDF Downloads 431
8951 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model

Authors: Navid Daryasafar, Nima Farshidfar

Abstract:

In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.

Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation

Procedia PDF Downloads 536
8950 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 125
8949 Assessment of OTA Contamination in Rice from Fungal Growth Alterations in a Scenario of Climate Changes

Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha

Abstract:

Rice (Oryza sativa) production plays a vital role in reducing hunger and poverty and assumes particular importance in low-income and developing countries. Rice is a sensitive plant, and production occurs strictly where suitable temperature and water conditions are found. Climatic changes are likely to affect worldwide, and some models have predicted increased temperatures, variations in atmospheric CO₂ concentrations and modification in precipitation patterns. Therefore, the ongoing climatic changes threaten rice production by increasing biotic and abiotic stress factors, and crops will grow in different environmental conditions in the following years. Around the world, the effects will be regional and can be detrimental or advantageous depending on the region. Mediterranean zones have been identified as possible hot spots, where dramatic temperature changes, modifications of CO₂ levels, and rainfall patterns are predicted. The actual estimated atmospheric CO₂ concentration is around 400 ppm, and it is predicted that it can reach up to 1000–1200 ppm, which can lead to a temperature increase of 2–4 °C. Alongside, rainfall patterns are also expected to change, with more extreme wet/dry episodes taking place. As a result, it could increase the migration of pathogens, and a shift in the occurrence of mycotoxins, concerning their types and concentrations, is expected. Mycotoxigenic spoilage fungi can colonize the crops and be present in all rice food chain supplies, especially Penicillium species, mainly resulting in ochratoxin A (OTA) contamination. In this scenario, the objectives of the present study are evaluating the effect of temperature (20 vs. 25 °C), CO₂ (400 vs. 1000 ppm), and water stress (0.93 vs 0.95 water activity) on growth and OTA production by a Penicillium nordicum strain in vitro on rice-based media and when colonizing layers of raw rice. Results demonstrate the effect of temperature, CO₂ and drought on the OTA production in a rice-based environment, thus contributing to the development of mycotoxins predictive models in climate change scenarios. As a result, improving mycotoxins' surveillance and monitoring systems, whose occurrence can be more frequent due to climatic changes, seems relevant and necessary. The development of prediction models for hazard contaminants presents in foods highly sensitive to climatic changes, such as mycotoxins, in the highly probable new agricultural scenarios is of paramount importance.

Keywords: climate changes, ochratoxin A, penicillium, rice

Procedia PDF Downloads 69
8948 The Good, the Bad and the Ugly in E-Procurement: A Case Study of Agricultural Company in Vietnam

Authors: D. T. Tran, H. P. Tran, L. G. Hoang, V. N. H. Bui, Q. T. Nguyen, A. K. Das

Abstract:

This paper provides some insight information about a current situation of e-procurement implementation in Vietnam, including opportunities and challenges. A case study of Phuc Thien Company which is classified as a medium enterprise in the country, specialising on animal feed production. Since the technological development rapidly changes, companies have implemented advanced technologies in supply chain management to increase efficiency and gain collaboration amidst partners in their manufacturing and development activities. The findings of this research reveal strengths and ongoing weaknesses when Phuc Thien company internally implemented eProcurement system. Although cost savings, visibility of payment and speedy procurement process are one of the largest benefits of eProcurement implementation, the company faces greater hurdles, such as employee capability to use technology and their resistance to change, that overshadow everything else. In terms of governmental policy, the adaptation of e-invoicing has commenced since June 2015 in Vietnam, legal regulations and administrative framework related to e-Procurement carries various ambiguous in its content and extremely fragment. Hence, this adds a great burden to enterprises in general and Phuc Thien in particular in view of creating higher competitive advantage for animal feed industry in Vietnam as well as South East Asia region.

Keywords: procurement, e-procurement, animal feed industry, efficiency

Procedia PDF Downloads 332
8947 On-Farm Diversification in Vietnam: Determinants and Trends

Authors: Diep Thanh Tung, Joachim Aurbacher

Abstract:

This study aims to measure the level of on-farm diversification in Vietnam. The empirical results of the research carried out reflect regional differences in terms of on-farm diversification and its determinants. Households in the northern regions have adapted to the fragmented and small-sized parcels of land held by diversifying their on-farm activities. In contrast, the Mekong delta region in the south of Vietnam is characterized by larger agricultural parcels and a specialization in rice production. Land use fragmentation, as reflected by a large number of plots in a given area, is one of the most important reasons for the high levels of on-farm diversification seen, while the higher share of non-farm income in total income is the reason of lower levels of on-farm diversification. Households have reacted to natural and economic shocks by diversifying their on-farm activities. The non-stationary Markov chain model used here shows various diversification scenarios and trends. In most cases, on-farm diversification generally tends to reduce over the next few years.

Keywords: diversification, simpson index, fixed effects, non-stationary markov chain

Procedia PDF Downloads 484
8946 Validation of Codes Dragon4 and Donjon4 by Calculating Keff of a Slowpoke-2 Reactor

Authors: Otman Jai, Otman Elhajjaji, Jaouad Tajmouati

Abstract:

Several neutronic calculation codes must be used to solve the equation for different levels of discretization which all necessitate a specific modelisation. This chain of such models, known as a calculation scheme, leads to the knowledge of the neutron flux in a reactor from its own geometry, its isotopic compositions and a cross-section library. Being small in size, the 'Slowpoke-2' reactor is difficult to model due to the importance of the leaking neutrons. In the paper, the simulation model is presented (geometry, cross section library, assumption, etc.), and the results obtained by DRAGON4/DONJON4 codes were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor and the experimental data. Criticality calculations have been performed to verify and validate the model. Since created model properly describes the reactor core, it can be used for calculations of reactor core parameters and for optimization of research reactor application.

Keywords: transport equation, Dragon4, Donjon4, neutron flux, effective multiplication factor

Procedia PDF Downloads 468
8945 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 269
8944 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement

Procedia PDF Downloads 167
8943 Finite State Markov Chain Model of Pollutants from Service Stations

Authors: Amina Boukelkoul, Rahil Boukelkoul, Leila Maachia

Abstract:

The cumulative vapors emitted from the service stations may represent a hazard to the environment and the population. Besides fuel spill and their penetration into deep soil layers are the main contributors to soil and ground-water contamination in the vicinity of the petrol stations. The amount of the effluents from the service stations depends on strategy of maintenance and the policy adopted by the management to reduce the pollution. One key of the proposed approach is the idea of managing the effluents from the service stations which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating a probabilistic percentage of the amount of emitted pollutants is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the amount according to various options of operation.

Keywords: environment, markov modeling, pollution, service station

Procedia PDF Downloads 470