Search results for: rotor efficiency
5748 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation
Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski
Abstract:
In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming
Procedia PDF Downloads 4075747 Technological Innovation and Efficiency of Production of the Greek Aquaculture Industry
Authors: C. Nathanailides, S. Anastasiou, A. Dimitroglou, P. Logothetis, G. Kanlis
Abstract:
In the present work we reviewed historical data of the Greek Marine aquaculture industry including adoption of new methods and technological innovation. The results indicate that the industry exhibited a rapid rise in production efficiency, employment and adoption of new technologies which reduced outbreaks of diseases, reduced production risk and the price of the farmed fish. The improvements of total quality practices and technological input on the Greek Aquaculture industry include improved survival, growth and body shape of farmed fish, which resulted from development of new aquaculture feeds and the genetic selection of the bloodstock. Also improvements in the quality of the final product were achieved via technological input in the methods and technology applied during harvesting, packaging, and transportation-preservation of farmed fish ensuring high quality of the product from the fish farm to the plate of the consumers. These parameters (health management, nutrition, genetics, harvesting and post-harvesting methods and technology) changed significantly over the last twenty years and the results of these improvements are reflected in the production efficiency of the Aquaculture industry and the quality of the final product. It is concluded that the Greek aquaculture industry exhibited a rapid growth, adoption of technologies and supply was stabilized after the global financial crisis, nevertheless, the development of the Greek aquaculture industry is currently limited by international trade sanctions, credit crunch, and increased taxation and not by limited technology or resources.Keywords: innovation, aquaculture, total quality, management
Procedia PDF Downloads 3725746 Speed Ratio Control of Pulley Based V-Belt Type Continuously Variable Transmission (CVT) using Fuzzy Logic Controller
Authors: Ikbal Eski, Turan Gürgenç
Abstract:
After nearly more than a century of research and development, internal combustion engines have become almost perfect. Along with such improvement in internal combustion engines, automotive manufacturers are conducting research on design of alternative fuel vehicles. Nevertheless an ideal interim solution is to increase overall efficiency of internal combustion vehicles. A potential solution to achieve that is using continuously variable transmission system which, despite being an old idea, has recently become a hope for automotive manufacturers. CVT system, by continuously varying speed ratio, raises vehicle efficiency. In this study, fuzzy logic controller is used in speed ratio control of pulley based CVT system.Keywords: continuously variable transmission system, variator, speed ratio, fuzzy logic
Procedia PDF Downloads 2855745 Experimental Investigation of Performance and Emission Characteristics of Using Acetylene Gas in CI Engine
Authors: S. Sivakumar, Ashwin Bala, S. Prithviraj, K. Panthala Rajakumaran, R. Pradeep, J. Udhayakumar
Abstract:
Studies reveal that acetylene gas derived from hydrolysis of calcium carbide has similar properties to that of diesel. However, the self-ignition temperature of acetylene gas is higher than that of diesel. Early investigations reveal that acetylene gas could be used as alternative fuel mode. In the present work, acetylene gas of 31/min were inducted and diesel was injected into the combustion chamber of a single cylinder air cooled diesel engine. It was observed that the higher calorific value of acetylene gas improves the brake thermal efficiency at full load conditions. The CO and HC emissions were higher at part load conditions as compared to conventional diesel. The Nox emission level was higher and smoke emission was lower during dual fuel mode under all operating conditions. It is concluded that dual fuel mode of acetylene gas and diesel improves the brake thermal efficiency and reduces smoke in diesel engine.Keywords: acetylene gas, diesel engine, Nox emission, CO emission, HC emission
Procedia PDF Downloads 3675744 [Keynote Speaker]: Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods
Authors: Ahmed Amine Hachicha
Abstract:
Temperature effect on the performance of a photovoltaic module is one of the main concern that face this renewable energy, especially in the hot arid region, e.g United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to a non-cooling module and the performance of the PV module is determined for different situations. A mathematical model is presented to estimate the theoretical performance and validate the experimental results with and without cooling. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly.Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect
Procedia PDF Downloads 4975743 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver
Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen
Abstract:
This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network
Procedia PDF Downloads 775742 The Effect of the Performance Evolution System on the Productivity of Administrating and a Case Study
Authors: Ertuğrul Ferhat Yilmaz, Ali Riza Perçin
Abstract:
In the business enterprises implemented modern business enterprise principles, the most important issues are increasing the performance of workers and getting maximum income. Through the twentieth century, rapid development of the sectors of data processing and communication and because of the free trade politics arising of multilateral business enterprises have canceled the economical borders and changed the local rivalry into the spherical rivalry. In this rivalry conditions, the business enterprises have to work active and productive in order to continue their existences. The employees worked at business enterprises have formed the most important factor of product. Therefore, the business enterprises inferring the importance of the human factors in order to increase the profit have used “the performance evolution system” to increase the success and development of the employees. The evolution of the performance is aimed to increase the manpower productive by using the employees in an active way. Furthermore, this system assists the wage politics implemented in business enterprise, determining the strategically plans in business enterprises through the short and long terms, being promoted and determining the educational needs of employees, making decisions as dismissing and work rotation. It requires a great deal of effort to catch the pace of change in the working realm and to keep up ourselves up-to-date. To get the quality in people,to have an effect in workplace depends largely on the knowledge and competence of managers and prospective managers. Therefore,managers need to use the performance evaluation systems in order to base their managerial decisions on sound data. This study aims at finding whether the organizations effectively use performance evaluation systms,how much importance is put on this issue and how much the results of the evaulations have an effect on employees. Whether the organizations have the advantage of competition and can keep on their activities depend to a large extent on how they effectively and efficiently use their employees.Therefore,it is of vital importance to evaluate employees' performance and to make them better according to the results of that evaluation. The performance evaluation system which evaluates the employees according to the criteria related to that organization has become one of the most important topics for management. By means of those important ends mentioned above,performance evaluation system seems to be a tool that can be used to improve the efficiency and effectiveness of organization. Because of its contribution to organizational success, thinking performance evaluation on the axis of efficiency shows the importance of this study on a different angle. In this study, we have explained performance evaluation system ,efficiency and the relation between those two concepts. We have also analyzed the results of questionnaires conducted on the textile workers in Edirne city.We have got positive answers from the questions about the effects of performance evaluation on efficiency.After factor analysis ,the efficiency and motivation which are determined as factors of performance evaluation system have the biggest variance (%19.703) in our sample. Thus, this study shows that objective performance evaluation increases the efficiency and motivation of employees.Keywords: performance, performance evolution system, productivity, Edirne region
Procedia PDF Downloads 3035741 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 485740 On the Exergy Analysis of the Aluminum Smelter
Authors: Ayoola T. Brimmo, Mohamed I. Hassan
Abstract:
The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.Keywords: exergy analysis, electrolytic cell, furnace, heat transfer
Procedia PDF Downloads 2895739 Transfer of Electrical Energy by Magnetic Induction
Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa
Abstract:
Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor
Procedia PDF Downloads 5185738 Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa
Authors: Imessaoudene Y., Mouhouche B., Sengouga A., Kadir M.
Abstract:
The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation.Keywords: virtual water, water use efficiency, water requirements, Djelfa
Procedia PDF Downloads 4305737 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee
Abstract:
Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant
Procedia PDF Downloads 1555736 Enzyme Immobilization: A Strategy to Overcome Enzyme Limitations and Expand Their Applications
Authors: Charline Monnier, Rudolf Andrys, Irene Castellino, Lucie Zemanova
Abstract:
Due to their inherent sustainability and compatibility with green chemistry principles, enzymes are attracting increasing attention for various applications like bioremediation or biocatalysis. These natural catalysts boast remarkable substrate specificity and operate under mild biological conditions. However, their intrinsic limitations, such as instability at high temperatures or in organic solvents, impede their wider applicability. Enzyme immobilization on supportive matrices emerges as a promising strategy to address these challenges. This approach not only facilitates enzyme reusability but also offers the potential to modulate their stability, activity, and selectivity. The present study investigates the immobilization and application of two distinct groups of hydrolases on supportive matrices: PETases, naturally capable of PolyEthylene Terephthalate (PET) degradation, and cholinesterases (ChEs), key enzymes in neurotransmitter regulation. All tested enzymes will be immobilized on porous and non-porous particles using both covalent and non-covalent methods. Additionally, the stability of PETases and cholinesterases will be explored, followed by exposure to denaturing conditions to assess their resilience under harsh conditions. Furthermore, due to the exceptional catalytic efficiency and selectivity, their biocatalytic efficiency will be tested using xenobiotic substrates, aiming to establish them as replacements for conventional chemical catalysts in environmentally friendly processes. By exploiting the power of enzyme immobilization, this research strives to unlock the full potential of these biocatalysts for sustainable and efficient technological advancements.Keywords: biocatalysis, bioremediation, enzyme efficiency, enzyme immobilization, green chemistry
Procedia PDF Downloads 575735 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation
Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand
Abstract:
Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation
Procedia PDF Downloads 1445734 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704
Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi
Abstract:
In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.Keywords: corn, nitrogen, comparison, biological yield
Procedia PDF Downloads 3585733 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques
Authors: Songul Cinaroglu
Abstract:
Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.Keywords: public hospital unions, efficiency, data envelopment analysis, random forest
Procedia PDF Downloads 1265732 The High Efficiency of Cationic Azo Dye Removal Using Raw, Purified and Pillared Clay from Algerian Clay
Authors: Amina Ramdani, Abdelkader Kadeche, Zoubida Taleb, Safia Taleb
Abstract:
The aim of this present study is to evaluate the adsorption capacity of a dye, Malachite green, on a local Algerian montmorillonite clay mineral (raw, purified and Cr-pillared). Various parameters influencing the dye adsorption process ie contact time, adsorbent dose, initial concentration of dye, pH of the solution and temperature. Cr pillared clay has been obtained with a better surface character than purified and natural clay. An increase in basal spacing from 12.45 Å (Mont-Na) to 22.88 Å (Mont-PLCr), surface area from 67 m2 /g (Mont-Na) to 102 m2 /g (Mont-PLCr). The experimental results show that the dye adsorption kinetic were fast: 5 min for Cr-pillared clay mineral, and 30 min for raw and purified clay mineral (RC and Mont-Na). The removal efficiency on Mont-PLCr (98.64%) is greater than that of Mont-Na (86.20%) and RC (82.09%). The acidity and basicity of the medium considerably affect the adsorption of the dye. It attained its maximum at pH 4.8. The equilibrium and kinetic data were found to fit well the Langmuir model and the pseudo-second-order model.Keywords: Dye removal, pillared clay, isotherm, kinetic
Procedia PDF Downloads 1655731 Tourism and Hospitality Education Efficiency Management: The Case of the Tourism Department of Sultan Qaboos University
Authors: Tamer Mohamed Atef
Abstract:
The tourism and hospitality education is a branch of the overall tourism and hospitality industry that is dedicated to providing the industry with well-educated, well-trained, skilled, enthusiastic and committed workforce. The Tourism Department at the College of Arts and Social Sciences (Sultan Qaboos University), Oman, has been providing the Omani society with undergraduate tourism and hospitality educational services since Fall 2001. Despite the fact that Tourism Department graduates are not facing any employment concerns, fluctuation in the number of enrollees and graduates, however, has been a significant characteristic since the inception of the program. To address this concern, several tactical and strategic decisions have been made, notably that the program has received accreditation from two prestigious international accreditation institutions, which mark two major milestones in the educational journey of the Tourism Department. The current study, thus, aims to provide a tourism and hospitality education efficiency management model. To achieve this aim, the following objectives were identified: to analyze students in - graduates out matrix, and to assess graduates’ employment trends. A survey was conducted to assess the current employment status of the department graduates. Secondary data were collected from Deanship of Admission and Registration statistical reports on the Tourism Department. Data were tabulated and analyzed in such a way that set forth the major findings from the survey and the secondary data. This study sheds light on the educational system created and followed by the Tourism Department, in an effort to provide a tourism and hospitality education efficiency management model, that would help educators and administrators better manage their programs.Keywords: tourism, hospitality, education, students, graduates, employability, indicators
Procedia PDF Downloads 3495730 Design and Manufacture of a Hybrid Gearbox Reducer System
Authors: Ahmed Mozamel, Kemal Yildizli
Abstract:
Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque
Procedia PDF Downloads 1525729 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets
Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar
Abstract:
Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).Keywords: coupled effect, heat transfer, sink, solid rocket motors, source
Procedia PDF Downloads 2235728 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre
Authors: Ng Mei Han, Nu'man Abdul Hadi
Abstract:
Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre
Procedia PDF Downloads 835727 Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments
Authors: F. G Okibe, C. E Gimba, V. O Ajibola, I. G Ndukwe, E. D. Paul
Abstract:
A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l.Keywords: factorial experimental design, adsorption, optimization, brachystegia eurycoma, xylene cyanol ff
Procedia PDF Downloads 4005726 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 2185725 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability
Authors: Warda L. Panondi, Norihiro Izumi
Abstract:
Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model
Procedia PDF Downloads 2105724 Product Modularity, Collaboration and the Impact on Innovation Performance in Intra-Organizational R&D Networks
Authors: Daniel Martinez, Tim de Leeuw, Stefan Haefliger
Abstract:
The challenges of managing a large and geographically dispersed R&D organization have been further increasing during the past years, concentrating on the leverage of a geo-graphically dispersed body of knowledge in an efficient and effective manner. In order to reduce complexity and improve performance, firms introduce product modularity as one key element for global R&D network teams to develop their products and projects in collaboration. However, empirical studies on the effects of product modularity on innovation performance are really scant. Furthermore, some researchers have suggested that product modularity promotes innovation performance, while others argue that it inhibits innovation performance. This research fills this gap by investigating the impact of product modularity on various dimensions of innovation performance, i.e. effectiveness and efficiency. By constructing the theoretical framework, this study suggests that that there is an inverted U-shaped relationship between product modularity and innovation performance. Moreover, this research work suggests that the optimum of innovation performance efficiency will be at a higher level than innovation performance effectiveness at a given product modularity level.Keywords: modularity, innovation performance, networks, R&D, collaboration
Procedia PDF Downloads 5205723 Corporate Governance of Enterprise IT: Research Study on IT Governance Maturity
Authors: Mario Spremic
Abstract:
Despite the financial crisis and ongoing need for cost cutting, companies all around the world heavily invest in information systems (IS) and underlying information technology (IT). Information systems (IS) play very important role in modern business organizations supporting its organizational efficiency or, under certain circumstances, fostering business model innovation and change. IS can influence organization competitiveness in two ways: supporting operational efficiency (IS as a main infrastructure for the current business), or differentiating business through business model innovation and business process change. In either way, IS becomes very important to the business and needs to be aligned with strategic objectives in order to justify massive investments. A number of studies showed that investments in IS and underlying IT resulted in added business value if they are truly connected with strategic business objectives. In that sense proliferation of governance of enterprise IT helps companies manage, or rather, governs IS as a primary business function with executive management involved in making a decision about IS and IT. The quality of IT governance is rising with the large number of decisions about IS made by executive management, not IT departments. The more executive management is engaged in making a decision about IS and IT, the IT governance is of better quality. In this paper, the practice of governing the enterprise IT will be investigated on a sample of the largest 100 Croatian companies. Research questions posed here will reveal if there are some formal IT governance mechanisms, are there any differences in perceived role of IS and IT between CIOs (Chief Information Officers) and CEOs (Chief Executive Officers) of the sampled companies and what are the mechanisms to govern massive investment in enterprise IT.Keywords: IT governance, governance of enterprise IT, information system auditing, operational efficiency
Procedia PDF Downloads 3045722 Cargo Securement Standards and Braking Maneuvers
Authors: Jose A. Romero, Frank Otremba, Alejandro A. Lozano-Guzman
Abstract:
Road safety is affected by many factors, involving the vehicle, the infrastructure, and the environment. Many efforts have been thus made to improve road safety through rational standards for the different systems involved in freight transportation. Cargo shifting and falling have been recognized as critical and contributive effects for road crashes. To avoid such situations, regional and international standards have been implemented, aiming to prevent such types of cargo-related accidents. In particular, there are specific compulsory standard requirements to maintain the cargo on the vehicle without shifting, when the vehicle performs an emergency braking maneuver. In this paper, a simulation is presented to analyze the effect of the vibration of the cargo on the braking distance of the vehicle. Such vibration can lead to a poor cargo restraining, and higher braking efficiency, as a result of the decoupling of the cargo mass from the vehicle mass. Such higher braking efficiency, on the order of 4.4%, further suggests a greater demand for the current braking standards.Keywords: road safety, cargo securement, shifting cargo, vehicle dynamics, ABS
Procedia PDF Downloads 1665721 Virtual Reality Technology for Employee Training in High-Risk Industries: Benefits and Advancements
Authors: Yeganeh Jabbari, Sepideh Khalatabad
Abstract:
This study explores the development of virtual reality (VR) technology for training applications, specifically its the potential benefits of VR technology for employee training and its ability to simulate real-world scenarios in a safe and controlled environment are highlighted, along with the associated cost and time savings. The adoption of VR technology in high-risk industrial organizations such as the oil and gas industry is discussed, with a focus on its ability to improve worker performance. Additionally, the use of VR technology in activities such as simulation and data visualization in the oil and gas industry is explored, leading to enhanced safety measures and collaboration between teams. The integration of advanced technologies such as robotics is mentioned as a way to further promote efficiency and sustainability. Also, the study mentions that the digital transformation of the oil and gas industry is revolutionizing operations and promoting safety, efficiency, and sustainability through the use of VR technology.Keywords: virtual reality training, virtual reality benefits, high-risk industries, digital transformation
Procedia PDF Downloads 885720 Participatory Testing of Precision Fertilizer Management Technologies in Mid-Hills of Nepal
Authors: Kedar Nath Nepal, Dyutiman Choudhary, Naba Raj Pandit, Yam Gahire
Abstract:
Crop fertilizer recommendations are outdated as these are based on the response trails conducted over half a century ago. Further, these recommendations were based on the response trials conducted over large geographical area ignoring the large spatial variability in indigenous nutrient supplying capacity of soils typical of most smallholder systems. Application of fertilizer following such blanket recommendation in fields with varying native nutrient supply capacity leads to under application in some places and over application in others leading to reduced nutrient-use-efficiency (NUE), loss of profitability, and increased environmental risks associated with loss of unutilized nutrient through emissions or leaching. Opportunities exist to further increase yield and profitability through a significant gain in fertilizer use efficiency with commercialization of affordable and precise application technologies. We conducted participatory trails in Maize (Zea Mays), Cauliflower (Brassica oleracea var. botrytis) and Tomato (Solanum lycopersicum) in Mid Hills of Nepal to evaluate the efficacy of Urea Deep Placement (UDP and Polymer Coated Urea (PCU);. UDP contains 46% of N having individual briquette size 2.7 gm each and PCU contains 44% of N . Both PCU and urea briquette applied at reduced amount (100 kg N/ha) during planting produced similar yields (p>0.05) compared with regular urea (200 Kg N/ha). . These fertilizers also reduced N fertilizer by 35 - 50% over government blanket recommendations. Further, PCU and urea briquette increased farmer’s net income by USD 60 to 80.Keywords: high efficiency fertilizers, urea deep placement, briquette polymer coated urea, zea mays, brassica, lycopersicum, Nepal
Procedia PDF Downloads 1735719 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building
Authors: Zehra Aybike Kılıç, Alpin Köknel Yener
Abstract:
Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort
Procedia PDF Downloads 176