Search results for: neural activity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7867

Search results for: neural activity

6787 Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters

Authors: Raida Zouari, Iness Ahriz, Rafik Zayani, Ali Dziri, Ridha Bouallegue

Abstract:

This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system.

Keywords: mobile indoor localization, multi-layer neural network (MLNN), channel impulse response (CIR), Gram-Shmidt orthogonalization

Procedia PDF Downloads 350
6786 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 79
6785 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.

Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards

Procedia PDF Downloads 464
6784 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 132
6783 Prevalence of Life Style Diseases and Physical Activities among Older in India

Authors: Vaishali Chaurasia

Abstract:

Ageing is the universal phenomenon that is associated with deteriorating health status. As the human becomes old, certain changes take place in an organism leading to morbidities, disabilities, and event death. Furthermore, older people are more vulnerable for the various kinds of diseases and health problem. Due to the some unhealthy conventions like smoking, drinking and unhealthy foods is the genesis of the lifestyle diseases. These diseases associated with the way a person or group of people lives. The main purpose of the study is to determine the prevalence of lifestyle diseases and its association with physical activity as well as the risk factors associated with it among the adult population in India. Longitudinal Aging Study in India and Study on Global Aging and Adult Health in India were used in the study. We will take population aged 50 and older, began in 1935, and regularly refreshed at younger ages with new birth cohorts. Life style diseases are more prominent in 65+ age group. The study finds an association between prevalence of life style diseases and life style risk factors. The lifestyle disease prevalence is more among higher age group people, female, richest quintile, and doing lesser physical activity. A higher prevalence of lifestyle diseases associated with the multiple risk factors. The occurrence of three and four risk factors was more prevalent in India. The frequency of different type of life style disease is higher among those who hardly or never do any physical activity as compare to those who do physical activity every day. The pattern remains the same in Moderate as well as vigorous physical activity. Those who are regularly doing physical activities have lesser percentage of having any disease and those who hardly ever or never do any physical activities and equally involve with some risk factors have higher percentage of having all type of diseases.

Keywords: lifestyle disease, morbidity, disability, physical activity

Procedia PDF Downloads 343
6782 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 22
6781 Antibacterial Potential from the Crude Extracts of Hemolymph and Hepatopancreas of Portunus segnis and Grapsus albolineatus

Authors: Mona Hajirasouli

Abstract:

Abstract: introduction: Antimicrobial compounds are important in the first line of the host defense system of many animal species. Material and methods: In the present study antibacterial activity of crude and proteins precipitate of hemolymph and crude hepatopancreas extracts from Portunus segnis and Grapsus albolineatus against a range of 6 different bacterial strains evaluated. Amoxicillin as a positive control were also used. Results: Maximum activity (15.9 mm) was recorded in male haemolymph of p.segnis against Entrobacter and minimum activity (7 mm) was recorded against Serratia marcescens, Enterobacter sp. and Proteus mirabilis from different extracts of Grapsus albolineatus. Data were analyzed using independent-t in SPSS version 16, and results indicate that there were not any significant differences between hemolymph and hepatopancreas extracts of 2 species. Discussion: Antimicrobial activity has been reported earlier in the hemolymph of some brachyuran crabs such as: blue crab Callinectes sapidus, mud crab Scylla serrata, Ocypode macrocera and Carcinus maenas. This study shows that hemolymph and hepatopancreas of Portunus segnis and Grapsus albolineatus may potential antibiotics.

Keywords: brachyuran, Portunus segnis, Grapsus albolineatus, hemolymph, hepatopancreas, antibacterial

Procedia PDF Downloads 167
6780 Effect of Vinclozolin on Some Biochemical Parameters of Galleria mellonella (Lepidoptera: Pyralidae)

Authors: Rahile Ozturk, Esra Maltas

Abstract:

This study aimed to determine the effect of vinclozolin on some biochemical characteristics of Galleria mellonella (Lepidoptera: Pyralidae) which is an economically harmful species damaging the honeycomb in beekeeping. For experimental groups, the eggs obtained from stock were dropped into the mixed feed of vinclozolin at different doses (20, 40 and 60 ppm) and had the larvae fed with this feed. As result of the addition of vinclozolin at concentrations of 20, 40 and 60 ppm, glycogen contents of G. mellonella were determined and a significant reduction in the amount of glycogen was observed with increasing concentration of vinclozolin. In this study, activity of catalase enzyme, particularly effective in defense mechanism, activity of xanthine oxidase involved in nucleotide metabolism and activity of glucose oxidase in the metabolism of carbohydrates were measured. When compared with the results from control groups, the enzyme activities of the larvaes fed with the feed including 20, 40 and 60 ppm of vinclozolin were observed to vary or remain constant. Accordingly, glucose oxidase and catalase activities increased with the increase in amount of vinclozolin in the feed and the activity of xanthine oxidase remained stable.

Keywords: Catalase, Galleria mellonella, glucose oxidase, vinclozolin, xanthine oxidase.

Procedia PDF Downloads 291
6779 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris

Abstract:

Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.

Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging

Procedia PDF Downloads 356
6778 Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish

Authors: Justina I. R. Udotong, Essien U. Essien

Abstract:

Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65 mg/l of Pb, 0.85 mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum.

Keywords: diagnostic enzymes, enzyme activity, heavy metals, tissues investigations

Procedia PDF Downloads 285
6777 Antioxidant Activity, Total Phenol and Pigments Content of Seaweeds Collected from, Rameshwaram, Gulf of Mannar, Southeast Coast of India

Authors: Suparna Roy, P. Anantharaman

Abstract:

The aim of this work is to estimate some in-vitro antioxidant activities and total phenols of various extracts such as aqueous, acetone, ethanol, methanol extract of seaweeds and pigments content by Spectrophotometric method. The seaweeds were collected during 2016 from Rameshwaram, southeast coast of India. Among four different extracts, aqueous extracts from all seaweeds had minimum activity than acetone, methanol and ethanol. The Rhodophyta and Phaeophyta had high antioxidant activity in comparing to Chlorophyta. The highest total antioxidant activity was found in acetone extract fromTurbinaria decurrens (98.97±0.00%), followed by its methanol extract (98.81±0.60%) and ethanol extract (98.58±0.53%). The highest reducing power and H2O2 scavenging activity were found in acetone extract of Caulerpa racemosa (383.25±1.04%), and methanol extract from Caulerpa racemosa var. macrophysa (24.91±0.49%). The methanol extract from Caulerpa scalpelliformis contained the highest total phenol (85.23±0.12%). The Chloro-a and Chloro-b contents were the highest in Gracilaria foliifera (13.69±0.38% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (9.12 ±0.12% mg/gm dry wt.) likewise carotenoid was also the highest in Gracilaria foliifera (0.054±0.0003% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (0.04 ±0.002% mg/gm dry wt.). It can be concluded from this study that some seaweed extract can be used for natural antioxidant production, after further characterization to negotiate the side effect of synthetic, market available antioxidants.

Keywords: seaweeds, antioxidant, total phenol, pigment, Olaikuda, Vadakkadu, Rameshwaram

Procedia PDF Downloads 264
6776 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 474
6775 Antioxidant Activity Of Gracilaria Fisheri Extract

Authors: Paam Bidaya

Abstract:

The red seaweed Gracilaria fisheri, widely distributed along Thailand's southern coastlines, has been discovered to be edible. Sulfated polysaccharides from G. fisheri were extracted in low-temperature (25 °C) water. Seaweed polysaccharides (SPs) have been shown to have various advantageous biological effects. This study aims to investigate total phenolic content and antioxidant capacity of G. fisheri extract. The total phenolic content of G. fisheri extract was determined using Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE). The antioxidant activity of G. fisheri extract was performed via 2, 2-diphenyl-1- picrylhydrazyl (DPPH) free radical scavenging assay and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, DPPH and ABTS assays showed that G. fisheri extract showed antioxidant activities as a concentration-dependent manner. The IC50 values of G. fisheri extract were 902.19 μg/mL ± 0.785 and 727.98 μg/mL ± 0.822 for DPPH and ABTS, respectively. Vitamin C was used as a positive control in DPPH assay, while Trolox was used as a positive control in ABTS assay. To conclude, G. fisheri extract consists of a high amount of total phenolic content, which exhibit a significant antioxidant activity. However, further investigation regarding antioxidant activity should be performed in order to identify the mechanism of Gracilaria fisheri action.

Keywords: ABTS assay, DPPH assay, sulfated polysaccharides, total phenolic content

Procedia PDF Downloads 192
6774 The Antimicrobial Activity of the Essential Oil of Salvia officinalis Harvested in Boumerdes

Authors: N. Mezıou-Cheboutı, A. Merabet, N. Behidj, F. Z. Bissaad

Abstract:

The Algeria by its location, offers a rich and diverse vegetation. A large number of aromatic and medicinal plants grow spontaneously. The interest in these plants has continued to grow in recent years. Their particular properties due to the essential oil fraction can be utilized to treat microbial infections. To this end, and in the context of the valuation of the Algerian flora, we became interested in the species of the family Lamiaceae which is one of the most used as a global source of spices and extracts strong families antimicrobial potency. The plant on which we have based our choice is a species of sage "Salvia officinalis" from the Isser localized region within the province of Boumerdes. This work focuses on the study of the antimicrobial activity of essential oil extracted from the leaves of salvia officinalis. The extraction is carried out by HE hydrodistillation and reveals a yield of 1.06℅. The study of the antimicrobial activity of the essential oil by the method of at aromatogramme shown that Gram positive bacteria are most susceptible (Staphylococcus aureus and Bacillus subtilis) with a strong inhibition of growth. The yeast Candida albicans fungus Aspergillus niger and have shown moderately sensitive.

Keywords: Salvia officinalis, steam distillation, essential oil, aromatogram, anti-microbial activity

Procedia PDF Downloads 314
6773 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 125
6772 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 96
6771 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 361
6770 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System

Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray

Abstract:

The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.

Keywords: back-propagation algorithm, load instability, neural network, power distribution system

Procedia PDF Downloads 432
6769 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 526
6768 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 99
6767 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 143
6766 Isolation, Characterization and Optimization of Alkalophilic and Thermotolerant Lipase from Bacillus subtilis Strain

Authors: Indu Bhushan Sharma, Rashmi Saraswat

Abstract:

The thermotolerant, solvent stable and alkalophilic lipase producing bacterial strain was isolated from the water sample of the foothills of Trikuta Mountain in Kakryal (Reasi district) in Jammu and Kashmir, India. The lipase-producing microorganisms were screened using tributyrin agar plates. The selected microbe was optimized for maximum lipase production by subjecting to various carbon and nitrogen sources, incubation period and inoculum size. The selected strain was identified as Bacillus subtilis strain kakrayal_1 (BSK_1) using 16S rRNA sequence analysis. Effect of pH, temperature, metal ions, detergents and organic solvents were studied on lipase activity. Lipase was found to be stable over a pH range of 6.0 to 9.0 and exhibited maximum activity at pH 8. Lipolytic activity was highest at 37°C and the enzyme activity remained at 60°C for 24hrs, hence, established as thermo-tolerant. Production of lipase was significantly induced by vegetable oil and the best nitrogen source was found to be peptone. The isolated Bacillus lipase was stimulated by pre-treatment with Mn2+, Ca2+, K+, Zn2+, and Fe2+. Lipase was stable in detergents such as triton X 100, tween 20 and Tween 80. The 100% ethyl acetate enhanced lipase activity whereas, lipase activity were found to be stable in Hexane. The optimization resulted in 4 fold increase in lipase production. Bacillus lipases are ‘generally recognized as safe’ (GRAS) and are industrially interesting. The inducible alkaline, thermo-tolerant lipase exhibited the ability to be stable in detergents and organic solvents. This could be further researched as a potential biocatalyst for industrial applications such as biotransformation, detergent formulation, bioremediation and organic synthesis.

Keywords: bacillus, lipase, thermotolerant, alkalophilic

Procedia PDF Downloads 252
6765 The Effect of Sexual Assault on Sport Participation Trajectories from Adolescence through Young Adulthood

Authors: Chung Gun Lee

Abstract:

Objectives: Certain life change events were shown to have strong effects on physical activity-related behavior, but more research is needed to investigate the longer-term effects of different life change events on physical activity-related behaviors. The purpose of this study is to examine the effect of experiencing physically or non-physically forced sexual activity on sports participation from adolescence to young adulthood. Methods: This study used the National Longitudinal Study of Adolescent Health (Add Health) data. Group-based trajectory modeling was utilized to examine the effect of experiencing sexual assault on trajectories of sports participation from adolescence to young adulthood. Results: Male participants were divided into three trajectory groups (i.e., Low-stable, High-decreasing, and High-stable) and female participants were divided into two trajectory groups (i.e., Low-stable and High-decreasing). The main finding of this study is that women who experienced non-physically forced sexual activity significantly decreases sports participation throughout the trajectory in ‘High-decreasing group.’ The effect of non-physically forced sexual activity on women’s sports participation was considerably weakened and became insignificant after including psychological depression in the model as a potential mediator. Discussion: Special attention should be paid to sport participation among women victims of non-physically forced sexual activity. Further studies are needed to examine other potential mediators in addition to psychological depression when examining the effect of non-physically forced sexual activity on sport participation in women.

Keywords: adolescent, group-based trajectory modeling, sexual assault, young adult

Procedia PDF Downloads 159
6764 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 144
6763 Day-To-Day Variations in Health Behaviors and Daily Functioning: Two Intensive Longitudinal Studies

Authors: Lavinia Flueckiger, Roselind Lieb, Andrea H. Meyer, Cornelia Witthauer, Jutta Mata

Abstract:

Objective: Health behaviors tend to show a high variability over time within the same person. However, most existing research can only assess a snapshot of a person’s behavior and not capture this natural daily variability. Two intensive longitudinal studies examine the variability in health behavior over one academic year and their implications for other aspects of daily life such as affect and academic performance. Can already a single day of increased physical activity, snacking, or improved sleep have beneficial effects? Methods: In two intensive longitudinal studies with up to 65 assessment days over an entire academic year, university students (Study 1: N = 292; Study 2: N = 304) reported sleep quality, physical activity, snacking, positive and negative affect, and learning goal achievement. Results: Multilevel structural equation models showed that on days on which participants reported better sleep quality or more physical activity than usual, they also reported increased positive affect, decreased negative affect, and better learning goal achievement. Higher day-to-day snacking was only associated with increased positive affect. Both, increased day-to-day sleep quality and physical activity were indirectly associated with better learning goal achievement through changes in positive and negative affect; results for snacking were mixed. Importantly, day-to-day sleep quality was a stronger predictor for affect and learning goal achievement than physical activity or snacking. Conclusion: One day of better sleep or more physical activity than usual is associated with improved affect and academic performance. These findings have important implications for low-threshold interventions targeting the improvement of daily functioning.

Keywords: sleep quality, physical activity, snacking, affect, academic performance, multilevel structural equation model

Procedia PDF Downloads 574
6762 A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo

Authors: Hanjun Zhao, Ke Zhang, Bojian Zheng

Abstract:

Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing.

Keywords: antiviral peptide, defensin, Influenza A virus, mechanism

Procedia PDF Downloads 395
6761 Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Authors: J. E. Mendes, L. Abrunhosa, J. A. Teixeira, E. R. de Camargo, C. P. de Souza, J. D. C. Pessoa

Abstract:

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Keywords: antifungal activity, Phomopsis sp., seeds, silver nanoparticles, soybean

Procedia PDF Downloads 454
6760 Synthesis and Analgesic activity of 2-(p-Substituted phenyl)-3-[4-(N-Substituted amino) methyl-2-oxo indoilin-3-ylidene]benzenesulfonyl Quinazolin-4(3H)-One Derivatives

Authors: N. Gopal, K. Jaasminerjiit, L. Z. Xiang

Abstract:

Quinazoline-4(3H)-one ring system has been consistently regarded as promising privileged structural icon owing to its pharmacodynamic versatility in many of its synthetic derivatives as well as in several naturally occurring alkaloids. The literature reveals that 2nd & 3rd positions of the quinazolin-4(3H)-one pharmacophore are the target for substitution with other moieties. On the other hand, sulphanilamide derivatives and isatin moiety also displayed valuable biological activities. Hence, it was thought worthwhile to study the effects of three pharmacophoric moieties like quinazolinone, sulphanilamide and isatin in a single molecule for the better analgesic activity with lower toxicity. Series of novel 2,3-disubstituted quinazolin-4(3H)-one derivatives have been synthesised from the intermediate Schiff base of 2-(4’-substitutedphenyl)-3-[(N-2-oxoindolin-3-ylidene)-4”-sulphonamidophenyl]-quinazolin-4(3H)-one derivatives, which was prepared from reacting 2-(substituted phenyl)-4H-benzo[d][1,3]-oxazin-4-one with sulphanilamide. The required benzoxazinone derivatives were prepared by reacting anthranilic acid with benzoyl chloride. All the compounds structure was characterised by using H1 NMR, IR and Mass spectroscopy. The intermediate Schiff base and final Mannich base compounds were evaluated for their analgesic activity by acetic acid-induced writhing method at the dose of 25mg/kg, 50 mg/kg, and 100 mg/kg (bw) and Diclofenac (25mg/kg of body weight) will be used as the reference drugs. From the results of the study, it has been observed that final Mannich base showed a better analgesic activity when compared to the parent Schiff bases, it was found that compound substituted with N-methyl piperazine at 1st position of the indole nucleus of the final quinazolinone derivatives (GA4B1) i.e. 2-(4’-methoxy phenyl)-3-[4-(N-(1-N-methyl piperazine amine) methyl-2-oxo indoilin-3-ylidene] benzenesulfonyl quinazolin-4(3H)-one increases the analgesic activity and among the synthesised compounds, GA4B1 exhibited quite superior analgesic activity. The remaining Schiff bases and Mannich base derivatives exhibited moderate analgesic activity. All the compounds showed a dose dependent activity. None of the synthesised compound showed ulcer index whereas the standard drug, diclofenac [25 mg/kg (bw)] showed significantly higher gross ulcer index values.

Keywords: analgesic activity, isatin, mannich base, quinazolin-4(3H)-one

Procedia PDF Downloads 340
6759 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 33
6758 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 109