Search results for: multiple query optimization
6869 Curriculum System Optimization under Outstanding Engineers Training Mode of Mechanical and Electronic Engineering
Authors: El Miloudi Djelloul
Abstract:
Teaching program of `A plan for educating and training outstanding engineers' is divided into intramural teaching program and enterprise practice teaching program. Based on analyzing the basic principles of teaching plans which teaching plan follows for undergraduate mechanical and electrical engineering, major contents of specialty teaching project are studied amply. The study contents include the system optimization and reform of common curriculum, specialty curriculum and practice curriculum. The practice indicated that under outstanding engineers training mode, the optimized curriculum system have practicability, and achieve the training objectives.Keywords: curriculum system, mechanical and electronic engineering, outstanding engineers, teaching program
Procedia PDF Downloads 5306868 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 2266867 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation
Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo
Abstract:
The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation
Procedia PDF Downloads 1876866 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube
Authors: Abolfazl Hosseinkhani, Sepehr Sanaye
Abstract:
Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.Keywords: vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction
Procedia PDF Downloads 1356865 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 1366864 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis
Authors: Saeed Karimi, Ali Behbahaninia
Abstract:
In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic
Procedia PDF Downloads 946863 Optimization of the Conditions of Oligomerization and Polymerization Processes of Selected Olefins with the Use of Complex Compounds of Transition Metal Ions
Authors: Joanna Drzeżdżon, Marzena Białek
Abstract:
Polyolefins are a group of materials used today in all areas of life. They are used in the food, domestic and other industries. In particular, polyethylene and polypropylene have found application in the production of packaging materials, pipes, containers, car parts as well as elements of medical equipment, e.g. syringes. Optimization of the polymerization and oligomerization processes of selected olefins is a very important stage before the technological implementation of polyolefin production. The purpose of the studies is to determine the conditions for ethylene polymerization as well as 3-buten-2-ol and 2-chloro-2-propen-1-ol oligomerization with the use of oxovanadium(IV) dipicolinate complexes with N-heterocyclic ligands. Additionally, the studies aims to determine the catalytic activities of the dipicolinate oxovanadium(IV) complexes with N-heterocyclic ligands in the studied polymerization and oligomerization processes.Keywords: buten-2-ol, dipicolinate, ethylene, polymerization, oligomerization, vanadium
Procedia PDF Downloads 1966862 Searching Linguistic Synonyms through Parts of Speech Tagging
Authors: Faiza Hussain, Usman Qamar
Abstract:
Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics
Procedia PDF Downloads 3086861 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro
Authors: Rafael Zhindon Almeida
Abstract:
Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models
Procedia PDF Downloads 1006860 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands
Authors: Ross J. Maestas
Abstract:
Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands
Procedia PDF Downloads 3296859 The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, Epstein-Barr virus, central nervous system, EBNAs
Procedia PDF Downloads 956858 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology
Authors: Vasu Velagapudi, G. Suresh
Abstract:
PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate
Procedia PDF Downloads 3966857 Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy
Authors: Néstor Álvarez-Díaz, Pino Caballero-Gil, Héctor Reboso-Morales, Francisco Martín-Fernández
Abstract:
The recent tendency of "Internet of Things" (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work.Keywords: bluetooth low energy, indoor location, resource assignment, smartphones
Procedia PDF Downloads 3956856 Instance Selection for MI-Support Vector Machines
Authors: Amy M. Kwon
Abstract:
Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning
Procedia PDF Downloads 366855 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 1956854 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine
Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek
Abstract:
Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics
Procedia PDF Downloads 1696853 Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms
Authors: Belloufi Mohammed, Sellami Badreddine
Abstract:
This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising.Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property, line search
Procedia PDF Downloads 3756852 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1856851 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II
Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang
Abstract:
To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.Keywords: waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II
Procedia PDF Downloads 2396850 Development of Construction Cost Optimization System Using Genetic Algorithm Method
Authors: Hyeon-Seung Kim, Young-Hwan Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang
Abstract:
The project budget at the planned stage might be changed by the insufficient government budget or the design change. There are many cases more especially in the case of a project performed for a long period of time. If the actual construction budget is insufficient comparing with the planned budget, the construction schedule should also be changed to match the changed budget. In that case, most project managers change the planned construction schedule by a heuristic approach without a reasonable consideration on the work priority. This study suggests an optimized methodology to modify the construction schedule according to the changed budget. The genetic algorithm was used to optimize the modified construction schedule within the changed budget. And a simulation system of construction cost histogram in accordance with the construction schedule was developed in the BIM (Building Information Modeling) environment.Keywords: 5D, BIM, GA, cost optimization
Procedia PDF Downloads 5886849 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3136848 PolyScan: Comprehending Human Polymicrobial Infections for Vector-Borne Disease Diagnostic Purposes
Authors: Kunal Garg, Louise Theusen Hermansan, Kanoktip Puttaraska, Oliver Hendricks, Heidi Pirttinen, Leona Gilbert
Abstract:
The Germ Theory (one infectious determinant is equal to one disease) has unarguably evolved our capability to diagnose and treat infectious diseases over the years. Nevertheless, the advent of technology, climate change, and volatile human behavior has brought about drastic changes in our environment, leading us to question the relevance of the Germ Theory in our day, i.e. will vector-borne disease (VBD) sufferers produce multiple immune responses when tested for multiple microbes? Vector diseased patients producing multiple immune responses to different microbes would evidently suggest human polymicrobial infections (HPI). Ongoing diagnostic tools are exceedingly unequipped with the current research findings that would aid in diagnosing patients for polymicrobial infections. This shortcoming has caused misdiagnosis at very high rates, consequently diminishing the patient’s quality of life due to inadequate treatment. Equipped with the state-of-art scientific knowledge, PolyScan intends to address the pitfalls in current VBD diagnostics. PolyScan is a multiplex and multifunctional enzyme linked Immunosorbent assay (ELISA) platform that can test for numerous VBD microbes and allow simultaneous screening for multiple types of antibodies. To validate PolyScan, Lyme Borreliosis (LB) and spondyloarthritis (SpA) patient groups (n = 54 each) were tested for Borrelia burgdorferi, Borrelia burgdorferi Round Body (RB), Borrelia afzelii, Borrelia garinii, and Ehrlichia chaffeensis against IgM and IgG antibodies. LB serum samples were obtained from Germany and SpA serum samples were obtained from Denmark under relevant ethical approvals. The SpA group represented chronic LB stage because reactive arthritis (SpA subtype) in the form of Lyme arthritis links to LB. It was hypothesized that patients from both the groups will produce multiple immune responses that as a consequence would evidently suggest HPI. It was also hypothesized that the multiple immune response proportion in SpA patient group would be significantly larger when compared to the LB patient group across both antibodies. It was observed that 26% LB patients and 57% SpA patients produced multiple immune responses in contrast to 33% LB patients and 30% SpA patients that produced solitary immune responses when tested against IgM. Similarly, 52% LB patients and an astounding 73% SpA patients produced multiple immune responses in contrast to 30% LB patients and 8% SpA patients that produced solitary immune responses when tested against IgG. Interestingly, IgM immune dysfunction in both the patient groups was also recorded. Atypically, 6% of the unresponsive 18% LB with IgG antibody was recorded producing multiple immune responses with the IgM antibody. Similarly, 12% of the unresponsive 19% SpA with IgG antibody was recorded producing multiple immune responses with the IgM antibody. Thus, results not only supported hypothesis but also suggested that IgM may atypically prevail longer than IgG. The PolyScan concept will aid clinicians to detect patients for early, persistent, late, polymicrobial, & immune dysfunction conditions linked to different VBD. PolyScan provides a paradigm shift for the VBD diagnostic industry to follow that will drastically shorten patient’s time to receive adequate treatment.Keywords: diagnostics, immune dysfunction, polymicrobial, TICK-TAG
Procedia PDF Downloads 3346847 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation
Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou
Abstract:
This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units
Procedia PDF Downloads 1586846 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming
Authors: Derkaoui Orkia, Lehireche Ahmed
Abstract:
The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation
Procedia PDF Downloads 2236845 Cost Reduction Techniques for Provision of Shelter to Homeless
Authors: Mukul Anand
Abstract:
Quality oriented affordable shelter for all has always been the key issue in the housing sector of our country. Homelessness is the acute form of housing need. It is a paradox that in spite of innumerable government initiated programmes for affordable housing, certain section of society is still devoid of shelter. About nineteen million (18.78 million) households grapple with housing shortage in Urban India in 2012. In Indian scenario there is major mismatch between the people for whom the houses are being built and those who need them. The prime force faced by public authorities in facilitation of quality housing for all is high cost of construction. The present paper will comprehend executable techniques for dilution of cost factor in housing the homeless. The key actors responsible for delivery of cheap housing stock such as capacity building, resource optimization, innovative low cost building material and indigenous skeleton housing system will also be incorporated in developing these techniques. Time performance, which is an important angle of above actors, will also be explored so as to increase the effectiveness of low cost housing. Along with this best practices will be taken up as case studies where both conventional techniques of housing and innovative low cost housing techniques would be cited. Transportation consists of approximately 30% of total construction budget. Thus use of alternative local solutions depending upon the region would be covered so as to highlight major components of low cost housing. Government is laid back regarding base line information on use of innovative low cost method and technique of resource optimization. Therefore, the paper would be an attempt to bring to light simpler solutions for achieving low cost housing.Keywords: construction, cost, housing, optimization, shelter
Procedia PDF Downloads 4476844 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan
Procedia PDF Downloads 1366843 Web Page Design Optimisation Based on Segment Analytics
Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi
Abstract:
In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.Keywords: analytics, design optimization, visual block trees, vision based technology
Procedia PDF Downloads 2676842 Bacterial Diversity and Antibiotic Resistance in Coastal Sediments of Izmir Bay, Aegean Sea
Authors: Ilknur Tuncer, Nihayet Bizsel
Abstract:
The scarcity of research in bacterial diversity and antimicrobial resistance in coastal environments as in Turkish coasts leads to difficulties in developing efficient monitoring and management programs. In the present study, biogeochemical analysis of sediments and antimicrobial susceptibility analysis of bacteria in Izmir Bay, eastern Aegean Sea under high anthropogenic pressure were aimed in summer period when anthropogenic input was maximum and at intertidal zone where the first terrigenious contact occurred for aquatic environment. Geochemical content of the intertidal zone of Izmir Bay was firstly illustrated such that total and organic carbon, nitrogen and phosphorus contents were high and the grain size distribution varied as sand and gravel. Bacterial diversity and antibiotic resistance were also firstly given for Izmir Bay. Antimicrobially assayed isolates underlined the multiple resistance in the inner, middle and outer bays with overall 19% high MAR (multiple antibiotic resistance) index. Phylogenetic analysis of 16S rRNA gene sequences indicated that 67 % of isolates belonged to the genus Bacillus and the rest included the families Alteromonadaceae, Bacillaceae, Exiguobacteriaceae, Halomonadaceae, Planococcaceae, and Staphylococcaceae.Keywords: bacterial phylogeny, multiple antibiotic resistance, 16S rRNA genes, Izmir Bay, Aegean Sea
Procedia PDF Downloads 4736841 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 926840 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency
Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee
Abstract:
Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system
Procedia PDF Downloads 434