Search results for: complex simulation suite
8822 Numerical Simulation and Optimal Control in Gas Dynamic Laser GDLs
Authors: Laggoun Chouki
Abstract:
In this paper we present the design and mechanisms of the physics process and discuss the performances of continuous gas laser dynamics, based on molecules N2(v=1)→C02(001)(v=3). The main objectives of work in this area are, obtaining the high laser energies in short time durations needed for the feasibility studies the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using gaseous media. The process generating the wave excited, on the basis of the excited level vibration, Theoretical predictions are compared with experimental results. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation.Keywords: modelling, lasers, gas, numerical, nozzle
Procedia PDF Downloads 828821 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups
Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley
Abstract:
Significant long-term investment projects can involve complex decisions. These are often described as capital projects, and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives; these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in the complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with the perception of veracity and validity of the data presented; this impacted the ability of group to reach consensus and, therefore, for decisions to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making
Procedia PDF Downloads 1328820 Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium
Authors: Jiemiao Chen, Shuoxun Xu
Abstract:
The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government.Keywords: vine copula, weather index, crop insurance premium, insurance risk management, Monte Carlo simulation
Procedia PDF Downloads 2018819 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL
Authors: Ding Liangxiao
Abstract:
The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability
Procedia PDF Downloads 478818 CFD Effect of the Tidal Grating in Opposite Directions
Authors: N. M. Thao, I. Dolguntseva, M. Leijon
Abstract:
Flow blockages referring to the increase in flow are considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. Computational Fluid Dynamic simulation studies the flow characteristics by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinct features of flow velocity between “convergent” and “divergent” grating placements are up to in confined conditions. Furthermore, the velocity in case of granting is higher than that of the divergent grating.Keywords: marine current energy, converter, turbine granting, RANS simulation, water flow velocity
Procedia PDF Downloads 4108817 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine
Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao
Abstract:
The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)
Procedia PDF Downloads 3488816 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation
Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan
Abstract:
The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation
Procedia PDF Downloads 2588815 Joint Simulation and Estimation for Geometallurgical Modeling of Crushing Consumption Energy in the Mineral Processing Plants
Authors: Farzaneh Khorram, Xavier Emery
Abstract:
In this paper, it is aimed to create a crushing consumption energy (CCE) block model and determine the blocks with the potential to have the maximum grinding process energy consumption for the study area. For this purpose, a joint estimate (co-kriging) and joint simulation (turning band method and plurigaussian methods) to predict the CCE based on its correlation with SAG power index (SPI), A×B, and ball mill bond work Index (BWI). The analysis shows that TBCOSIM and plurigaussian have the more realistic results compared to cokriging. It seems logical due to the nature of the data geometallurgical and the linearity of the kriging method and the smoothing effect of kriging.Keywords: plurigaussian, turning band, cokriging, geometallurgy
Procedia PDF Downloads 738814 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System
Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek
Abstract:
This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.Keywords: data warehouse, GIS, MCDM, SOLAP
Procedia PDF Downloads 1788813 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: subcontracting, optimal control, deterioration, simulation, production planning
Procedia PDF Downloads 5808812 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams
Authors: Babak Safaei, A. M. Fattahi
Abstract:
In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)
Procedia PDF Downloads 3258811 Body Shape Control of Magnetic Soft Continuum Robots with PID Controller
Authors: M. H. Korayem, N. Sangsefidi
Abstract:
Magnetically guided soft robots have emerged as a promising technology in minimally invasive surgery due to their ability to adapt to complex environments. However, one of the main challenges in this field is damage to the vascular structure caused by unwanted stress on the vessel wall and deformation of the vessel due to improper control of the shape of the robot body during surgery. Therefore, this article proposes an approach for controlling the form of a magnetic, soft, continuous robot body using a PID controller. The magnetic soft continuous robot is modelled using Cosserat theory in static mode and solved numerically. The designed controller adjusts the position of each part of the robot to match the desired shape. The PID controller is considered to minimize the robot's contact with the vessel wall and prevent unwanted vessel deformation. The simulation results confirmed the accuracy of the numerical solution of the static Cosserat model. Also, they showed the effectiveness of the proposed contouring method in achieving the desired shape with a maximum error of about 0.3 millimetres.Keywords: PID, magnetic soft continuous robot, soft robot shape control, Cosserat theory, minimally invasive surgery
Procedia PDF Downloads 1118810 In-Depth Analysis of Involved Factors to Car-Motorcycle Accidents in Budapest City
Authors: Danish Farooq, Janos Juhasz
Abstract:
Car-motorcycle accidents have been observed higher in recent years, which caused mainly riders’ fatalities and serious injuries. In-depth crash investigation methods aim to investigate the main factors which are likely involved in fatal road accidents and injury outcomes. The main objective of this study is to investigate the involved factors in car-motorcycle accidents in Budapest city. The procedure included statistical analysis and data sampling to identify car-motorcycle accidents by dominant accident types based on collision configurations. The police report was used as a data source for specified accidents, and simulation models were plotted according to scale (M 1:200). Car-motorcycle accidents were simulated in Virtual Crash software for 5 seconds before the collision. The simulation results showed that the main involved factors to car-motorcycle accidents were human behavior and view obstructions. The comprehensive, in-depth analysis also found that most of the car drivers and riders were unable to perform collision avoidance manoeuvres before the collision. This study can help the traffic safety authorities to focus on simulated involved factors to solve road safety issues in car-motorcycle accidents. The study also proposes safety measures to improve safe movements among road users.Keywords: car motorcycle accidents, in-depth analysis, microscopic simulation, safety measures
Procedia PDF Downloads 1518809 From Linear to Nonlinear Deterrence: Deterrence for Rising Power
Authors: Farhad Ghasemi
Abstract:
Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence
Procedia PDF Downloads 1428808 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review
Authors: Anicet Dansou
Abstract:
Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete
Procedia PDF Downloads 1098807 The Effect of Probiotic and Vitamin B Complex Supplementation on Interferon-γ and Interleukin-10 Levels in Patients with TB Infection during Intensive Phase Therapy
Authors: Yulistiani Yulistiani, Wenny Nilamsari, Laurin Winarso, Rizkiya Rizkiya, Zamrotul Izzah, Budi Suprapti, Arif Bachtiar
Abstract:
Approximately, a million new cases of TB have been found out per year, making Indonesia as the second greatest country with TBC after India. Nevertheless, until now, there are still many patients failure to conventional therapy with oral anti tuberculosis. Thus, the discovery of supplement therapy is urgently needed. Many studies showed that probiotic had the positive impact in lung diseases, diarrhea, pneumonia and it was attributed to its capability to balance the level of cytokine pro-inflammatory and anti-inflammatory. It was demonstrated in active disease the production of IFN-γ is strongly depressed and IL-10 level increases. This study aimed to investigate the effect of probiotic (multi strains) and vitamin B complex supplementation on IFN-γ and IL-10 level in patients with TB infection during intensive phase therapy. A randomized controlled trial, open labeled was conducted in TB patients with the following criteria: 1) age 18-55 years old 2) receiving oral antituberculosis during intensive therapy 3) not using probiotic, vitamin B1, B6, B12 2 weeks before enrollment 4) willing to participate in this study and signed an informed consent. While, patients with HIV, pregnant, had the history of diabetes mellitus, using corticosteroid or other immunosuppressants were excluded. IFN-γ and IL-10 levels were drawn before observation and after a month observation. The assay was performed by ELISA. There were seven patients in treated group and five patients in controlled group obtained in this study. Between groups, there was no statistical difference in comorbid, age, and disease duration. The mean level of IFN-γ after a month observation increased in treated group and controlled group, which were 31.47 ± 105.46 pg/ml and 15.09 ± 24.23 pg/ml, respectively (p> 0.005). Although, there were not statistically different, treated group showed a greater increase of IFN-γ level than that of the controlled group. IFN-γ plays an important role in immune response to Mycobacterium Tuberculosis, by activating macrofag, monosit and furthermore killing Mycobacterium Tuberculosis. Thus the level was expected to increase after supplementation with probiotic and Vitamin B complex. While the mean level of IL-10 also increased after one month observation in the treated group and controlled group (4.28 ± 12.29 pg/ml and 5.77± 6.21 pg/ml, respectively) (p>0.005). To be compared, the increased level of IL-10 in the treated group were lower than the controlled group, although it was not statistically different. IL-10 is a cytokine anti-inflammatory, thus, the level after the observation was expected to decrease. In this study, a month therapy of probiotic and vitamin B complex was not able to demonstrate the decrease of the IL-10 level. It is suggested to prolong observation up to 2 months, because, in intensive phase, the level of cytokine anti-inflammatory is very high, so the longer therapy is needed. It is indicated that supplementation therapy with probiotic and vitamin B complex to Oral Anti-Tuberculosis may have a positive effect on increasing IFN-γ level and slowing the progression of IL-10.Keywords: TB Infection, IFN-γ, IL-10, probiotic, vitamin B complex
Procedia PDF Downloads 3748806 Electricity Market Categorization for Smart Grid Market Testing
Authors: Rebeca Ramirez Acosta, Sebastian Lenhoff
Abstract:
Decision makers worldwide need to determine if the implementation of a new market mechanism will contribute to the sustainability and resilience of the power system. Due to smart grid technologies, new products in the distribution and transmission system can be traded; however, the impact of changing a market rule will differ between several regions. To test systematically those impacts, a market categorization has been compiled and organized in a smart grid market testing toolbox. This toolbox maps all actual energy products and sets the basis for running a co-simulation test with the new rule to be implemented. It will help to measure the impact of the new rule, based on the sustainable and resilience indicators.Keywords: co-simulation, electricity market, smart grid market, market testing
Procedia PDF Downloads 1908805 Simulation of I–V Characteristics of Lateral PIN Diode on Polysilicon Films
Authors: Abdelaziz Rabhi, Mohamed Amrani, Abderrazek Ziane, Nabil Belkadi, Abdelraouf Hocini
Abstract:
In this paper, a bedimensional simulation program of the electric characteristics of reverse biased lateral polysilicon PIN diode is presented. In this case we have numerically solved the system of partial differential equations formed by Poisson's equation and both continuity equations that take into account the effect of impact ionization. Therefore we will obtain the current-voltage characteristics (I-V) of the reverse-biased structure which may include the effect of breakdown.The geometrical model assumes that the polysilicon layer is composed by a succession of defined mean grain size crystallites, separated by lateral grain boundaries which are parallel to the metallurgic junction.Keywords: breakdown, polycrystalline silicon, PIN, grain, impact ionization
Procedia PDF Downloads 3828804 The Convection Heater Numerical Simulation
Authors: Cristian Patrascioiu, Loredana Negoita
Abstract:
This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm
Procedia PDF Downloads 2928803 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor
Authors: Shima Soleimani, Steven Eckels
Abstract:
One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger
Procedia PDF Downloads 1158802 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya
Abstract:
Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination
Procedia PDF Downloads 4198801 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses
Authors: Djamila Aboutaleb, Brahim Safi
Abstract:
In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.Keywords: sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics
Procedia PDF Downloads 3378800 Supplemental VisCo-friction Damping for Dynamical Structural Systems
Authors: Sharad Singh, Ajay Kumar Sinha
Abstract:
Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping
Procedia PDF Downloads 1588799 Immunomodulatory Activity of Polysaccharide-Protein Complex Isolated from the Sclerotia of Polyporus Rhinocerus in Murine Macrophages
Authors: Chaoran Liu
Abstract:
Bioactive polysaccharides and polysaccharide-protein complex derived from mushrooms and fungi have a wide range of immunomodulatory activity with low side-effects and have therefore the potential to be developed as an adjuvant in cancer therapies. Mushrooms sclerotium is rich in polysaccharides and the polysaccharides isolated from the sclerotium of Polyporus rhinocerus have shown potent in vivo and in vitro immunomodulatory effects. Macrophages are considered to be an important component of the innate immune response against bacterial infection and cancer. To better understanding the immunomodulatory effects and its underlying mechanisms of sclerotial water-soluble polysaccharides extracted from P. rhinocerus on macrophages, the objectives of this study are to purify the water-soluble novel sclerotial polysaccharides and to characterize the structure and properties as well as to study the detailed molecular mechanisms of the in vitro immunomodulating effects in murine macrophages. The hot water-soluble fraction PRW from the sclerotium of P. rhinocerus was obtained using solvent extraction. PRW was further fractionated by membrane ultrafiltration to a give a fraction (PRW1) with molecular mass less than 50 kDa. PRW1 was characterized to be a polysaccharide-protein complex composed of 45.7% polysaccharide and 44.2% protein. The chemical structure of the carbohydrate moiety of PRW1 was elucidated by GC and FTIR to be mainly beta-D-glucan with trace amount of galactose and mannose. The immunomodulatory effects of PRW1 on murine RAW 264.7 macrophages were demonstrated in terms of the increase in nitric oxide production and cytokine production. Mechanistically, PRW1 initiates ERK phosphorylation to activate macrophages within 15 min and significantly improves the expression level of inducible NOS (iNOS) from 6 h after treatment. In summary, this study indicates that PRW1 is a potent immunomodulatory agent for macrophages and suggests that mushroom sclerotia from Polyporus rhinocerus requires for further investigation in cancer research.Keywords: Polyporus rhinocerus, mushroom sclerotia, Polysaccharide-Protein Complex, macrophage activation
Procedia PDF Downloads 2338798 A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations
Authors: Mohamed Boubekri, Jaewook Lee
Abstract:
The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution.Keywords: daylight factor, hourly daylight illuminance, daylight autonomy, useful daylight illuminance
Procedia PDF Downloads 2858797 Effect of the Levitation Screen Sizes on Magnetic Parameters of Tracking System
Authors: Y. R. Adullayev, О. О. Karimzada
Abstract:
Analytical expressions for inductances, current, ampere-turns, excitation winding, maximum width, coordinates of the levitation screen (LS) are derived for the calculation of electromagnetic devices based on tracking systems with levitation elements (TS with LS). Taking into account the expression of the complex magnetic resistance of the screen, the dependence of the screen width on the heating temperature of the physical and technical characteristics of the screen material and the relationship of the geometric dimensions of the magnetic circuit is established. Analytic expressions for a number of functional dependencies characterizing complex parameter relationships in explicit form are obtained and analyzed.Keywords: tracking systems, levitation screens, electromagnetic levitation, excitation windings, magnetic cores, defining converter, receiving converter, electromagnetic force, electrical and magnetic resistance
Procedia PDF Downloads 2328796 Charting the Course: Using group Charters to Enhance Engagement and Learning Outcomes
Authors: Angela Knox
Abstract:
Student diversity in postgraduate classes puts major challengesoneducatorsseekingtoencouragestudentengagementand desired learning outcomes. This paper outlines the impact of a set of teaching initiatives aimed at addressing challenges associated with teaching and learning in an environment characterized by diversity in the student cohort. The study examines postgraduate students completing the core capstone unit within a specialized business degree. Although relatively small, the student cohort is highly diverse in terms of cultural backgrounds represented, prior learning and/or qualifications,aswellasdurationandtypeofworkexperiencerelevant to the degree being completed. The wide range of cultures, existing knowledge, and experience create enormous challenges with respect to students’ learning needs and outcomes. Subsequently, a suite of teaching innovations has been adopted to enhance curriculum content/delivery and the design of assessments. This paperexplores the impact of formalized group charters on students’ learning outcomes. Data from surveys and focus groups are used to assess the effectiveness of these practices. The results highlight the effectiveness of formalizedgroup charters in addressing diverse student needs and enhancing student engagement and learning outcomes. Thesefindings suggest that such practices would benefit students’ learning in environments marked by diversity in the student cohort. Specific recommendationsareofferedforothereducatorsworkingwithdiverse classes.Keywords: assessment design, curriculum content, curriculum delivery, group charter, student diversity
Procedia PDF Downloads 1358795 Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand
Authors: Natapol Pumipuntu
Abstract:
Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection.Keywords: Staphylococcus argenteus, subclinical bovine mastitis, Staphylococcus aureus complex, mass spectrometry, MLST
Procedia PDF Downloads 1518794 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game
Authors: Hossam Ali-Hassan, Michael Bliemel
Abstract:
This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game
Procedia PDF Downloads 3298793 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS
Procedia PDF Downloads 178