Search results for: complex low-rise building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8681

Search results for: complex low-rise building

7601 Using Nature-Based Solutions to Decarbonize Buildings in Canadian Cities

Authors: Zahra Jandaghian, Mehdi Ghobadi, Michal Bartko, Alex Hayes, Marianne Armstrong, Alexandra Thompson, Michael Lacasse

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) report stated the urgent need to cut greenhouse gas emissions to avoid the adverse impacts of climatic changes. The United Nations has forecasted that nearly 70 percent of people will live in urban areas by 2050 resulting in a doubling of the global building stock. Given that buildings are currently recognised as emitting 40 percent of global carbon emissions, there is thus an urgent incentive to decarbonize existing buildings and to build net-zero carbon buildings. To attain net zero carbon emissions in communities in the future requires action in two directions: I) reduction of emissions; and II) removal of on-going emissions from the atmosphere once de-carbonization measures have been implemented. Nature-based solutions (NBS) have a significant role to play in achieving net zero carbon communities, spanning both emission reductions and removal of on-going emissions. NBS for the decarbonisation of buildings can be achieved by using green roofs and green walls – increasing vertical and horizontal vegetation on the building envelopes – and using nature-based materials that either emit less heat to the atmosphere thus decreasing photochemical reaction rates, or store substantial amount of carbon during the whole building service life within their structure. The NBS approach can also mitigate urban flooding and overheating, improve urban climate and air quality, and provide better living conditions for the urban population. For existing buildings, de-carbonization mostly requires retrofitting existing envelopes efficiently to use NBS techniques whereas for future construction, de-carbonization involves designing new buildings with low carbon materials as well as having the integrity and system capacity to effectively employ NBS. This paper presents the opportunities and challenges in respect to the de-carbonization of buildings using NBS for both building retrofits and new construction. This review documents the effectiveness of NBS to de-carbonize Canadian buildings, identifies the missing links to implement these techniques in cold climatic conditions, and determine a road map and immediate approaches to mitigate the adverse impacts of climate change such as urban heat islanding. Recommendations are drafted for possible inclusion in the Canadian building and energy codes.

Keywords: decarbonization, nature-based solutions, GHG emissions, greenery enhancement, buildings

Procedia PDF Downloads 78
7600 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping

Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract:

This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.

Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning

Procedia PDF Downloads 285
7599 Urban Intensification and the Character of Urban Landscape: A Morphological Perspective

Authors: Xindong An, Kai Gu

Abstract:

Urban intensification is regarded as the prevalent strategy in many cities of the world to ease the pressures of urban sprawl and deliver sustainable development through increasing the density of built form and activities. However, within the context of intensive development, planning and design control measures that help to maintain and promote the character of existing residential environments have been slow to develop. This causes the possible loss of the character of an area that makes a place unique and distinctive. The purpose of this paper is to explore the way of identifying the character of an urban area for the planning of urban landscape in the implementation of intensification. By employing the theory of urban morphology, the concept of morphological region is used for the analysis and characterisation of the spatial structure of the urban landscape in terms of ground plans, building types, and building and land utilisation. The morphological mapping of the character of urban landscape is suggested, which lays a foundation for more sensitive planning of urban landscape changes.

Keywords: character areas, urban intensification, urban morphology, urban landscape

Procedia PDF Downloads 211
7598 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data

Authors: Salihah Alghamdi, Surajit Ray

Abstract:

Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.

Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray

Procedia PDF Downloads 126
7597 Power Plants between Environmental Pollution and Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu, Mihai Cruceru

Abstract:

Power plants represent the main source of air pollution, through combustion processes, both by releasing large amounts of dust, greenhouse gases and acidifying, and large quantities of waste, slag and ash disposed in landfills covering significant areas. SC Turceni S.A. is one of the largest power generating unit from Romania. Their policy is focused on the production and delivery of electricity in order to increase energy efficiency and to reduce the environmental impact. The paper presents environmental impact produced by slag and ash storage, while pointing out that the recovery of this waste significant improves the air quality in the area. An important aspect is the proprieties of the ash and slag evacuated by Turceni power plant in order to use them for building materials manufacturing.

Keywords: ash and slag properties, air pollution, building materials industry, power plants

Procedia PDF Downloads 306
7596 Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia

Authors: Agus Hariyadi, Hiroatsu Fukuda

Abstract:

In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption.

Keywords: façade, natural light, blind, energy

Procedia PDF Downloads 328
7595 Impact of Tryptic Limited Hydrolysis on Bambara Protein-Gum Arabic Soluble Complexes Formation

Authors: Abiola A. Ojesanmi, Eric O. Amonsou

Abstract:

The formation of soluble complexes is usually within a narrow pH range characterized by weak interactions. Moreover, the rigid conformation of globular proteins restricts the number of charged groups capable of interacting with polysaccharides, thereby limiting food applications. Hence, this study investigated the impact of tryptic-limited hydrolysis on the formation of Bambara protein-gum arabic soluble complexes formation. The electrostatic interactions were monitored through turbidimetry analysis. The Bambara protein hydrolysates at a specified degree of hydrolysis, and DHs (2, 5, and 7.5) were characterized using size exclusion chromatography, zeta potential, surface hydrophobicity, and intrinsic fluorescence. The stability of the complexes was investigated using differential scanning calorimetry and rheometry. The limited tryptic hydrolysis significantly widened the pH range of the formation of soluble complexes, with DH 5 having a wider range (pH 7.0 - 4.3) compared to DH 2 and DH 7.5, while there was no notable difference in the optimum complexation pH of the insoluble complexes. Larger peptides (140, 118 kDa) were detected in DH 2 relative to 144, 70, and 61 kDa in DH 5, which were larger than 140, 118, 48, and 32 kDa in DH 7. 5. An increase in net negative charge (- 30 Mv for DH 7.5) and a slight shift in the net neutrality (from pH 4.9 to 4.3) of the hydrolysates were observed which consequently impacted the electrostatic interaction with gum arabic. There was exposure of the hydrophobic amino acids up to 4-fold in comparison with the isolate and a red shift in maximum fluorescence wavelength in DH dependent manner following the hydrolysis. The denaturation temperature of the soluble complex from the hydrolysates shifted to higher values, having DH 5 with the maximum temperature (94.24 °C). A highly interconnected gel-like soluble complex network was formed having DH 5 with a better structure relative to DH 2 and 7.5. The study showed the use of limited tryptic hydrolysis at DH 5 as an effective approach to modify Bambara protein and provided a more stable and wider pH range of formation for soluble complex, thereby enhancing the food application.

Keywords: Bambara groundnut, gum arabic, interaction, soluble complex

Procedia PDF Downloads 16
7594 A Study on the Korean Connected Industrial Parks Smart Logistics It Financial Enterprise Architecture

Authors: Ilgoun Kim, Jongpil Jeong

Abstract:

Recently, a connected industrial parks (CIPs) architecture using new technologies such as RFID, cloud computing, CPS, Big Data, 5G 5G, IIOT, VR-AR, and ventral AI algorithms based on IoT has been proposed. This researcher noted the vehicle junction problem (VJP) as a more specific detail of the CIPs architectural models. The VJP noted by this researcher includes 'efficient AI physical connection challenges for vehicles' through ventilation, 'financial and financial issues with complex vehicle physical connections,' and 'welfare and working conditions of the performing personnel involved in complex vehicle physical connections.' In this paper, we propose a public solution architecture for the 'electronic financial problem of complex vehicle physical connections' as a detailed task during the vehicle junction problem (VJP). The researcher sought solutions to businesses, consumers, and Korean social problems through technological advancement. We studied how the beneficiaries of technological development can benefit from technological development with many consumers in Korean society and many small and small Korean company managers, not some specific companies. In order to more specifically implement the connected industrial parks (CIPs) architecture using the new technology, we noted the vehicle junction problem (VJP) within the smart factory industrial complex and noted the process of achieving the vehicle junction problem performance among several electronic processes. This researcher proposes a more detailed, integrated public finance enterprise architecture among the overall CIPs architectures. The main details of the public integrated financial enterprise architecture were largely organized into four main categories: 'business', 'data', 'technique', and 'finance'.

Keywords: enterprise architecture, IT Finance, smart logistics, CIPs

Procedia PDF Downloads 150
7593 Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction

Authors: Isha Rathore, Peeyush Jain, Elangovan Rajasekar

Abstract:

The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented.

Keywords: thermal capacity, tuning, peak demand reduction, parametric analysis

Procedia PDF Downloads 162
7592 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: education institutions, human capital, innovation systems, Mpumalanga Province

Procedia PDF Downloads 363
7591 Geopolymer Stabilization of Earth Building Material for Construction 3D Printing

Authors: Timur Mukhametkaliyev

Abstract:

The earthen material possesses low compression strength, and it is highly sensitive to the water content. Different binders can be added (Portland cement or lime) to improve the durability and the mechanical characteristics of earthen material, but the production of these binders has high embodied energy and results in an increase in world CO₂ emission. Geopolymers are binders which can be synthesized at low temperature in alkaline solutions from raw materials consisting of amorphous aluminosilicates. Geopolymers are an attractive substitution of Portland cement and can be used as an excellent stabilization for earthen material. In this study, earthen material stabilized with geopolymer binder for use in construction 3D printing was developed. Construction 3D printing offers freedom of design, waste minimisation, customisation, reduced labour, and automation. For successful 3D printing, the properties of used material are the most important aspects because they require adaptability for extrusion and controlled time of hardening for the binder.

Keywords: 3D printing, building construction, geopolymer, architecture

Procedia PDF Downloads 139
7590 Preliminary dosimetric Evaluation of a New Therapeutic 177LU Complex for Human Based on Biodistribution Data in Rats

Authors: H. Yousefnia, S. Zolghadri, A. Golabi Dezfuli

Abstract:

Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown to stop DNA synthesis in CCRF-CEM and Ehrlich ascites cells leading to a cell cycle arrest in G0/G1. One other important property of the phenanthroline nucleus is its ability to act as a triplet-state photosensitizer especially in complexes with lanthanides. In Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by irradiation of a natural Lu2O3 target at a thermal neutron flux of approximately 4 × 1013 n/cm2•s. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. The 177Lu-PL3 complex can prepare with high radiochemical yield (> 99 %) at optimized conditions. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectivley. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Keywords: internal dosimetry, Lutetium-177, radar, animals

Procedia PDF Downloads 363
7589 Failure Analysis of Laminated Veneer Bamboo Dowel Connections

Authors: Niloufar Khoshbakht, Peggi L. Clouston, Sanjay R. Arwade, Alexander C. Schreyer

Abstract:

Laminated veneer bamboo (LVB) is a structural engineered composite made from glued layers of bamboo. A relatively new building product, LVB is currently employed in similar sizes and applications as dimensional lumber. This study describes the results of a 3D elastic Finite Element model for halfhole specimens when loaded in compression parallel-to-grain per ASTM 5764. The model simulates LVB fracture initiation due to shear stresses in the dowel joint and predicts displacement at failure validated through comparison with experimental results. The material fails at 1mm displacement due to in-plane shear stresses. The paper clarifies the complex interactive state of in-plane shear, tension perpendicular-to-grain, and compression parallel-to-grain stresses that form different distributions in the critical zone beneath the bolt hole for half-hole specimens. These findings are instrumental in understanding key factors and fundamental failure mechanisms that occur in LVB dowel connections to help devise safe standards and further LVB product adoption and design.

Keywords: composite, dowel connection, embedment strength, failure behavior, finite element analysis, Moso bamboo

Procedia PDF Downloads 254
7588 Assessing the Feasibility of Incorporating Green Infrastructure into Colonial-Era Buildings in the Caribbean

Authors: Luz-Marina Roberts, Ancil Kirk, Aisha Donaldson, Anya Seepaul, Jade Lakhan, Shianna Tikasingh

Abstract:

Climate change has produced a crisis that particularly threatens small island states in the Caribbean. Developers and climate enthusiasts alike are now forced to find new and sustainable ways of building. Focus on existing buildings is particularly needed in Trinidad and Tobago, like other islands, especially as these countries are vulnerable to climate threats and geographic locations with close proximity to a hurricane. Additionally, since many colonial-era style buildings still exist, the idea that they are energy inefficient is at the forefront of the work of policy-makers. The question that remains is can these buildings be retrofitted to reflect the modern era while considering climate resilience. This paper aims to investigate the energy efficiency of colonial-era buildings in Port of Spain and whether these buildings in Trinidad and Tobago, if found to be energy inefficient, can be more energy efficient and sustainable. This involves collecting surveys from building management in colonial-era buildings and researching literature on colonial architecture in the Caribbean and modern innovations in green building designs. Additionally, the data and experiences from the Town and Country Planning Division in the Ministry of Planning and Development of Trinidad and Tobago will inform the paper. This research will aid in re-envisioning how green infrastructure can be applied to urban environments with older buildings and help inform planning policy as it relates to sustainability and energy efficiency.

Keywords: spatial planning, climate resilience, energy efficiency, sustainable development

Procedia PDF Downloads 54
7587 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures

Authors: Jitka Hroudová, Martin Sedlmajer, Jiří Zach

Abstract:

Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.

Keywords: thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.

Procedia PDF Downloads 286
7586 Confidence Building Strategies Adopted in an EAP Speaking Course at METU and Their Effectiveness: A Case Study

Authors: Canan Duzan

Abstract:

For most language learners, mastery of the speaking skill is the proof of the mastery of the foreign language. On the other hand, the speaking skill is considered as the most difficult aspect of language learning to develop for both learners and teachers. Especially in countries like Turkey where exposure to the target language is minimum and resources and opportunities provided for language practice are scarce, teaching and learning to speak the language become a real struggle for teachers and learners alike. Data collected from students, instructors, faculty members and the business sector in needs analysis studies conducted previously at Middle East Technical University (METU) consistently revealed the need for addressing the problem of lack of confidence in speaking English. Action was taken during the design of the only EAP speaking course offered in Modern Languages Department since lack of confidence is considered to be a serious barrier for effective communication and causes learners to suffer from insecurity, uncertainty and fear. “Confidence building” served as the guiding principle in the syllabus design, nature of the tasks created for the course and the assessment procedures to help learners become more confident speakers of English. In order to see the effectiveness of the decisions made during the design phase of the course and whether students become more confident speakers upon completion of the course, a case study was carried out with 100 students at METU. A questionnaire including both Likert-Scale and open-ended items were administered to students to collect data and this data were analyzed using the SPSS program. Group interviews were also carried out to gain more insight into the effectiveness of the course in terms of building speaking confidence. This presentation will explore the specific actions taken to develop students’ confidence based on the findings of program evaluation studies and to what extent the students believe these actions to be effective in improving their confidence. The unique design of this course and strategies adopted for confidence building are highly applicable in other EAP contexts and may yield similar positive results.

Keywords: confidence, EAP, speaking, strategy

Procedia PDF Downloads 385
7585 Health Post A Sustainable Prototype for the Third World

Authors: Chizzoniti Domenico, Beggiora Klizia, Cattani Letizia, Moscatelli Monica

Abstract:

This paper concerns the study of sustainable construction materials applied on the "Health Post", a prototype for the primary health care situated in alienated areas of the world. It's suitable for social and climatic Sub-Saharan context; however, it could be moved in other countries of the world with similar urgent needs. The idea is to create a Health Post with local construction materials that have a low environmental impact and promote the local workforce allowing reuse of traditional building techniques lowering production costs and transport. The aim of Primary Health Care Centre is to be a flexible and expandable structure identifying a modular form that can be repeated several times to expand its existing functions. In this way it could be not only a health care centre but also a socio-cultural facility.

Keywords: low costs building, sustainable construction materials, green construction system, prototype, health care, emergency

Procedia PDF Downloads 464
7584 A Preliminary Study on the Tagal Eco-Tourism and Empowerment for Local Community

Authors: Christiana Jonut

Abstract:

The study addresses tagal as an ecotourism product that is uniquely for Sabah. It is a community based tourism venture that is influenced by the Dusun ethic’s traditional law. The traditional principle of tagal is focused primarily on individual exploitation of riverine resources and it was transformed into a community participation in the riverine conservation to foster the growth or survival of ecotourism. It manages a river into a sustainable manner. A smart partnership system between the community and the authority particularly the Department of Fisheries Sabah, tagal has successfully become an instrument to protect, revive and manage the river fish resources. In 2015, Sabah Fisheries Department added 536 tagal sites. Most tagal sites were turned into a community based tourism venture. They generate income through jobs creation for the purpose of uplifting the local’s economic level. Tagal ecotourism sites also increase environmental awareness of the local people to love their culture, tradition and environment. This venture also promotes the sustainability of the eco-tourism. The objective of this study is to explore the issues and contexts of empowerment of the local people in managing a successful tagal ecotourism. This study further explains how community capacity building is the major influence of empowerment of the local community. The methodology approach used is qualitative where interview is chosen as the data collection method. This is a literature review of exploring empowerment of the local community through various community capacity building initiatives that would motivate the local people to be actively involved in the tagal.

Keywords: capacity building, Tagal, ecotourism, empowerment, Sabah

Procedia PDF Downloads 341
7583 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery

Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen

Abstract:

The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.

Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates

Procedia PDF Downloads 35
7582 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes

Procedia PDF Downloads 391
7581 Qualitative Analysis of Occupant’s Satisfaction in Green Buildings

Authors: S. Srinivas Rao, Pallavi Chitnis, Himanshu Prajapati

Abstract:

The green building movement in India commenced in 2003. Since then, more than 4,300 projects have adopted green building concepts. For last 15 years, the green building movement has grown strong across the country and has resulted in immense tangible and intangible benefits to the stakeholders. Several success stories have demonstrated the tangible benefit experienced in green buildings. However, extensive data interpretation and qualitative analysis are required to report the intangible benefits in green buildings. The emphasis is now shifting to the concept of people-centric design and productivity, health and wellbeing of occupants are gaining importance. This research was part of World Green Building Council’s initiative on 'Better Places for People' which aims to create a world where buildings support healthier and happier lives. The overarching objective of this study was to understand the perception of users living and working in green buildings. The study was conducted in twenty-five IGBC certified green buildings across India, and a comprehensive questionnaire was designed to capture occupant’s perception and experience in the built environment. The entire research focussed on the eight attributes of healthy buildings. The factors considered for the study include thermal comfort, visual comfort, acoustic comfort, ergonomics, greenery, fitness, green transit and sanitation and hygiene. The occupant’s perception and experience were analysed to understand their satisfaction level. The macro level findings of the study indicate that green buildings have addressed attributes of healthy buildings to a larger extent. Few important findings of the study focussed on the parameters such as visual comfort, fitness, greenery, etc. The study indicated that occupants give tremendous importance to the attributes such as visual comfort, daylight, fitness, greenery, etc. 89% occupants were comfortable with the visual environment, on account of various lighting element incorporated as part of the design. Tremendous importance to fitness related activities is highlighted by the study. 84% occupants had actively utilised sports and meditation facilities provided in their facility. Further, 88% occupants had access to the ample greenery and felt connected to the natural biodiversity. This study aims to focus on the immense advantages gained by users occupying green buildings. This will empower green building movement to achieve new avenues to design and construct healthy buildings. The study will also support towards implementing human-centric measures and in turn, will go a long way in addressing people welfare and wellbeing in the built environment.

Keywords: health and wellbeing, green buildings, Indian green building council, occupant’s satisfaction

Procedia PDF Downloads 168
7580 Balloon Analogue Risk Task (BART) Performance Indicators Help Predict Outcomes of Matched Savings Program

Authors: Carlos M. Parra, Matthew Sutherland, Ranjita Poudel

Abstract:

Reduced mental-bandwidth related to low socioeconomic status (low-SES) might lead to impulsivity and risk-taking behavior, which poses as a major hurdle towards asset building (savings) behavior. Understanding the relationship between risk-related personality metrics as well as laboratory risk behavior and real-life savings behavior can help facilitate the development of effective asset building programs, which are vital for mitigating financial vulnerability and income inequality. As such, this study explored the relationship between personality metrics, laboratory behavior in a risky decision-making task and real-life asset building (savings) behaviors among individuals with low-SES from Miami, Florida (FL). Study participants (12 male, 15 female) included racially and ethnically diverse adults (mean age 41.22 ± 12.65 years), with incomplete higher education (18% had High School Diploma, 30% Associates, and 52% Some College), and low annual income (mean $13,872 ± $8020.43). Participants completed eight self-report surveys and played a widely used risky decision-making paradigm called the Balloon Analogue Risk Task (BART). Specifically, participants played three runs of BART (20 trials in each run; total 60 trials). In addition, asset building behavior data was collected for 24 participants who opened and used savings accounts and completed a 6-month savings program that involved monthly matches, and a final reward for completing the savings program without any interim withdrawals. Each participant’s total savings at the end of this program was the main asset building indicator considered. In addition, a new effective use of average pump bet (EUAPB) indicator was developed to characterize each participant’s ability to place winning bets. This indicator takes the ratio of each participant’s total BART earnings to average pump bet (APB) in all 60 trials. Our findings indicated that EUAPB explained more than a third of the variation in total savings among participants. Moreover, participants who managed to obtain BART earnings of at least 30 cents out of their APB, also tended to exhibit better asset building (savings) behavior. In particular, using this criterion to separate participants into high and low EUAPB groups, the nine participants with high EUAPB (mean BART earnings of 35.64 cents per APB) ended up with higher mean total savings ($255.11), while the 15 participants with low EUAPB (mean BART earnings of 22.50 cents per APB) obtained lower mean total savings ($40.01). All mean differences are statistically significant (2-tailed p  .0001) indicating that the relation between higher EUAPB and higher total savings is robust. Overall, these findings can help refine asset building interventions implemented by policy makers and practitioners interested in reducing financial vulnerability among low-SES population. Specifically, by helping identify individuals who are likely to readily take advantage of savings opportunities (such as matched savings programs) and avoiding the stipulation of unnecessary and expensive financial coaching programs to these individuals. This study was funded by J.P. Morgan Chase (JPMC) and carried out by scientists from Florida International University (FIU) in partnership with Catalyst Miami.

Keywords: balloon analogue risk task (BART), matched savings programs, asset building capability, low-SES participants

Procedia PDF Downloads 131
7579 Risk Assessment of Building Information Modelling Adoption in Construction Projects

Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad

Abstract:

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Keywords: risk, BIM, fuzzy TOPSIS, construction projects

Procedia PDF Downloads 211
7578 Solving the Overheating on the Top Floor of Energy Efficient Houses: The Envelope Improvement

Authors: Sormeh Sharifi, Wasim Saman, Alemu Alemu, David Whaley

Abstract:

Although various energy rating schemes and compulsory building codes are using around the world, there are increasing reports on overheating in energy efficient dwellings. Given that the cooling demand of buildings is rising globally because of the climate change, it is more likely that the overheating issue will be observed more. This paper studied the summer indoor temperature in eight air-conditioned multi-level houses in Adelaide which have complied with the Australian Nationwide Houses Energy Rating Scheme (NatHERS) minimum energy performance of 7.5 stars. Through monitored temperature, this study explores that overheating is experienced on 75.5% of top floors during cooling periods while the air-conditioners were running. This paper found that the energy efficiency regulations have significantly improved thermal comfort in low floors, but not on top floors, and the energy-efficient house is not necessarily adapted with the air temperature fluctuations particularly on top floors. Based on the results, this study suggests that the envelope of top floors for multi-level houses in South Australian context need new criteria to make the top floor more heat resistance in order to: preventing the overheating, reducing the summer pick electricity demand and providing thermal comfort. Some methods are used to improve the envelope of the eight case studies. The results demonstrate that improving roofs was the most effective part of the top floors envelope in terms of reducing the overheating.

Keywords: building code, climate change, energy-efficient building, energy rating, overheating, thermal comfort

Procedia PDF Downloads 195
7577 Reliability of Eyewitness Statements in Fire and Explosion Investigations

Authors: Jeff Colwell, Benjamin Knox

Abstract:

While fire and explosion incidents are often observed by eyewitnesses, the weight that fire investigators should place on those observations in their investigations is a complex issue. There is no doubt that eyewitness statements can be an important component to an investigation, particularly when other evidence is sparse, as is often the case when damage to the scene is severe. However, it is well known that eyewitness statements can be incorrect for a variety of reasons, including deception. In this paper, we reviewed factors that can have an effect on the complex processes associated with the perception, retention, and retrieval of an event. We then review the accuracy of eyewitness statements from unique criminal and civil incidents, including fire and explosion incidents, in which the accuracy of the statements could be independently evaluated. Finally, the motives for deceptive eyewitness statements are described, along with techniques that fire and explosion investigators can employ, to increase the accuracy of the eyewitness statements that they solicit.

Keywords: fire, explosion, eyewitness, reliability

Procedia PDF Downloads 360
7576 Weak Mutually Unbiased Bases versus Mutually Unbiased Bases in Terms of T-Designs

Authors: Mohamed Shalaby, Yasser Kamal, Negm Shawky

Abstract:

Mutually unbiased bases (MUBs) have an important role in the field of quantum computation and information. A complete set of these bases can be constructed when the system dimension is the power of the prime. Constructing such complete set in composite dimensions is still an open problem. Recently, the concept of weak mutually unbiased bases (WMUBs) in composite dimensions was introduced. A complete set of such bases can be constructed by combining the MUBs in each subsystem. In this paper, we present a comparative study between MUBs and WMUBs in the context of complex projective t-design. Explicit proofs are presented.

Keywords: complex projective t-design, finite quantum systems, mutually unbiased bases, weak mutually unbiased bases

Procedia PDF Downloads 422
7575 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level

Procedia PDF Downloads 209
7574 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 255
7573 Towards Resource Sufficiency in Engineering Education in Sub-Saharan Africa

Authors: Iyabosola B. Oronti, Adeoluwawale A. Adewusi, Olubusola O. Nuga

Abstract:

Sub-Saharan Africa has long been known to be a region rife with poverty, inadequate health facilities, food shortages, high transport and communication costs and very low pace of infrastructural and technological development. These factors combined have led to decades of resource paucity in engineering education. Engineering is core to global development and building of capacity in engineering education with available resources in sub-Saharan Africa has become imperative. This paper identifies core political issues and policy shifts contributing adversely to this present state of affairs, and also explores the offshoots of the changing global political environment as it affects engineering education in the developing nations of sub-Saharan Africa. Opportunities for instituting resource sufficiency are examined and corrective measures that can be taken to resuscitate and stabilize the educational sector in the region are also suggested.

Keywords: capacity building, engineering education, resource sufficiency, sub-Saharan Africa

Procedia PDF Downloads 416
7572 Thermal Comfort Study of School Buildings in South Minahasa Regency Case Study: SMA Negeri 1 Amurang, Indonesia

Authors: Virgino Stephano Moniaga

Abstract:

Thermal comfort inside a building can affect students in their learning process. The learning process of students can be improved if the condition of the classrooms is comfortable. This study will be conducted in SMA Negeri 1 Amurang which is a senior high school building located in South Minahasa Regency. Based on preliminary survey, generally, students were not satisfied with the existing level of comfort, which subsequently affected the teaching and learning process in the classroom. The purpose of this study is to analyze the comfort level of classrooms occupants and recommend building design solutions that can improve the thermal comfort of classrooms. In this study, three classrooms will be selected for thermal comfort measurements. The thermal comfort measurements will be taken in naturally ventilated classrooms. The measured data comprise of personal data (clothing and students activity), air humidity, air temperature, mean radiant temperature and air flow velocity. Simultaneously, the students will be asked to fill out a questionnaire that asked about the level of comfort that was felt at the time. The results of field measurements and questionnaires will be analyzed based on the PMV and PPD indices. The results of the analysis will decide whether the classrooms are comfortable or not. This study can be continued to obtain a more optimal design solution to improve the thermal comfort of the classrooms. The expected results from this study can improve the quality of teaching and learning process between teachers and students which can further assist the government efforts to improve the quality of national education.

Keywords: classrooms, PMV, PPD, thermal comfort

Procedia PDF Downloads 296