Search results for: Features of Bitcoin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3885

Search results for: Features of Bitcoin

2805 Variation of Stagnation Properties at Various Altitudes of an Klimov RD-33 Engine

Authors: Upamanyu Majumder, Angshuman Das

Abstract:

The Klimov RD-33 is a turbofan jet engine for a lightweight fighter jet that is the primary engine for the Mikoyan MiG-29. Its production started in 1981. The RD-33 was the first afterburning turbofan engine produced by the Klimov Company of Russia in the 8,000 to 9,000 kilograms-force (78,000 to 88,000 N; 18,000 to 20,000 lbf) thrust class. It features a modular twin-shaft design with individual parts that can be replaced separately and has a good tolerance to the environment. The RD-33 is simple to maintain and retains good performance in challenging environments. In this paper the stagnation properties(pressure and temperature) at the intake diffuser, compressor and turbine sections of the RD-33 engine are calculated using the standard atmosphere conditions at different altitudes( take-off, 5000m, 10000m, 15000m, 20000m and 22500m). The results are plotted against altitude values using MS-Excel.

Keywords: Klimov RD-33 engine, stagnation properties, various altitudes, ms-excel

Procedia PDF Downloads 359
2804 Numerical Model Validation Using Durbin Method

Authors: H. Al-Hajeri

Abstract:

The computation of the effectiveness of turbulence enhancement surface features, such as ribs as means of promoting mixing and hence heat transfer, has attracted the continued attention of the engineering community. In this study, the simulation of a three-dimensional cooling passage is carried out employing a number of turbulence models including Durbin model. The cooling passage consists of a square section duct whose upper and lower surfaces feature staggered cuboid ribs. The main objective of this paper is to provide comparisons of the performance of the v2-f model against other established turbulence models as implemented in the commercial CFD code Ansys Fluent. The present study demonstrates that the v2-f model can successfully capture the isothermal air flow phenomena in flow over obstacles.

Keywords: CFD, cooling passage, Durbin model, turbulence model

Procedia PDF Downloads 503
2803 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 310
2802 Methodology to Affirm Driver Engagement in Dynamic Driving Task (DDT) for a Level 2 Adas Feature

Authors: Praneeth Puvvula

Abstract:

Autonomy in has become increasingly common in modern automotive cars. There are 5 levels of autonomy as defined by SAE. This paper focuses on a SAE level 2 feature which, by definition, is able to control the vehicle longitudinally and laterally at the same time. The system keeps the vehicle centred with in the lane by detecting the lane boundaries while maintaining the vehicle speed. As with the features from SAE level 1 to level 3, the primary responsibility of dynamic driving task lies with the driver. This will need monitoring techniques to ensure the driver is always engaged even while the feature is active. This paper focuses on the these techniques, which would help the safe usage of the feature and provide appropriate warnings to the driver.

Keywords: autonomous driving, safety, adas, automotive technology

Procedia PDF Downloads 89
2801 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points

Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti

Abstract:

The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.

Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points

Procedia PDF Downloads 216
2800 Multiple Primary Pulmonary Meningiomas: A Case Report

Authors: Wellemans Isabelle, Remmelink Myriam, Foucart Annick, Rusu Stefan, Compère Christophe

Abstract:

Primary pulmonary meningioma (PPM) is a very rare tumor, and its occurrence has been reported only sporadically. Multiple PPMs are even more exceptional, and herein, we report, to the best of our knowledge, the fourth case, focusing on the clinicopathological features of the tumor. Moreover, the possible relationship between the use of progesterone–only contraceptives and the development of these neoplasms will be discussed. Case Report: We report a case of a 51-year-old female presenting three solid pulmonary nodules, with the following localizations: right upper lobe, middle lobe, and left lower lobe, described as incidental findings on computed tomography (CT) during a pre-bariatric surgery check-up. The patient revealed no drinking or smoking history. The physical exam was unremarkable except for the obesity. The lesions ranged in size between 6 and 24 mm and presented as solid nodules with lobulated contours. The largest lesion situated in the middle lobe had mild fluorodeoxyglucose (FDG) uptake on F-18 FDG positron emission tomography (PET)/CT, highly suggestive of primary lung neoplasm. For pathological assessment, video-assisted thoracoscopic middle lobectomy and wedge resection of the right upper nodule was performed. Histological examination revealed relatively well-circumscribed solid proliferation of bland meningothelial cells growing in whorls and lobular nests, presenting intranuclear pseudo-inclusions and psammoma bodies. No signs of anaplasia were observed. The meningothelial cells expressed diffusely Vimentin, focally Progesterone receptors and were negative for epithelial (cytokeratin (CK) AE1/AE3, CK7, CK20, Epithelial Membrane Antigen (EMA)), neuroendocrine markers (Synaptophysin, Chromogranin, CD56) and Estrogenic receptors. The proliferation labelling index Ki-67 was low (<5%). Metastatic meningioma was ruled out by brain and spine magnetic resonance imaging (MRI) scans. The third lesion localized in the left lower lobe was followed-up and resected three years later because of its slow but significant growth (14 mm to 16 mm), alongside two new infra centimetric lesions. Those three lesions showed a morphological and immunohistochemical profile similar to previously resected lesions. The patient was disease-free one year post-last surgery. Discussion: Although PPMs are mostly benign and slow-growing tumors with an excellent prognosis, they do not present specific radiological characteristics, and it is difficult to differentiate it from other lung tumors, histopathologic examination being essential. Aggressive behavior is associated with atypical or anaplastic features (WHO grades II–III) The etiology is still uncertain and different mechanisms have been proposed. A causal connection between sexual hormones and meningothelial proliferation has long been suspected and few studies examining progesterone only contraception and meningioma risk have all suggested an association. In line with this, our patient was treated with Levonorgestrel, a progesterone agonist, intra-uterine device (IUD). Conclusions: PPM, defined by the typical histological and immunohistochemical features of meningioma in the lungs and the absence of central nervous system lesions, is an extremely rare neoplasm, mainly solitary and associating, and indolent growth. Because of the unspecific radiologic findings, it should always be considered in the differential diagnosis of lung neoplasms. Regarding multiple PPM, only three cases are reported in the literature, and this is the first described in a woman treated by a progesterone-only IUD to the best of our knowledge.

Keywords: pulmonary meningioma, multiple meningioma, meningioma, pulmonary nodules

Procedia PDF Downloads 114
2799 Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East

Authors: Shurouq Munzer

Abstract:

This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts.

Keywords: coarse ware, cooking utensils, ḥisba, waqif, muḥtasib, foodways, practice, cuisine, food preparation

Procedia PDF Downloads 74
2798 Protection of Victims’ Rights in International Criminal Proceedings

Authors: Irina Belozerova

Abstract:

In the recent years, the number of crimes against peace and humanity has constantly been increasing. The development of the international community is inseparably connected to the compliance with the law which protects the rights and interests of citizens in all of their manifestations. The provisions of the law of criminal procedure are no exception. The rights of the victims of genocide, of the war crimes and the crimes against humanity, require particular attention. These crimes fall within the jurisdiction of the International Criminal Court governed by the Rome Statute of the International Criminal Court. These crimes have the following features. First, any such crime has a mass character and therefore requires specific regulation in the international criminal law and procedure and the national criminal law and procedure of different countries. Second, the victims of such crimes are usually children, women and old people; the entire national, ethnic, racial or religious groups are destroyed. These features influence the classification of victims by the age criterion. Article 68 of the Rome Statute provides for protection of the safety, physical and psychological well-being, dignity and privacy of victims and witnesses and thus determines the procedural status of these persons. However, not all the persons whose rights have been violated by the commission of these crimes acquire the status of victims. This is due to the fact that such crimes affect a huge number of persons and it is impossible to mention them all by name. It is also difficult to assess the entire damage suffered by the victims. While assessing the amount of damages it is essential to take into account physical and moral harm, as well as property damage. The procedural status of victims thus gains an exclusive character. In order to determine the full extent of the damage suffered by the victims it is necessary to collect sufficient evidence. However, it is extremely difficult to collect the evidence that would ensure the full and objective protection of the victims’ rights. While making requests for the collection of evidence, the International Criminal Court faces the problem of protection of national security information. Religious beliefs and the family life of victims are of great importance. In some Islamic countries, it is impossible to question a woman without her husband’s consent which affects the objectivity of her testimony. Finally, the number of victims is quantified by hundreds and thousands. The assessment of these elements demands time and highly qualified work. These factors justify the creation of a mechanism that would help to collect the evidence and establish the truth in the international criminal proceedings. This mechanism will help to impose a just and appropriate punishment for the persons accused of having committed a crime, since, committing the crime, criminals could not misunderstand the outcome of their criminal intent.

Keywords: crimes against humanity, evidence in international criminal proceedings, international criminal proceedings, protection of victims

Procedia PDF Downloads 249
2797 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale

Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize

Abstract:

Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.

Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy

Procedia PDF Downloads 99
2796 An E-Retailing System Architecture Based on Cloud Computing

Authors: Chanchai Supaartagorn

Abstract:

E-retailing is the sale of goods online that takes place over the Internet. The Internet has shrunk the entire World. The world e-retailing is growing at an exponential rate in the Americas, Europe, and Asia. However, e-retailing costs require expensive investment, such as hardware, software, and security systems. Cloud computing technology is internet-based computing for the management and delivery of applications and services. Cloud-based e-retailing application models allow enterprises to lower their costs with their effective implementation of e-retailing activities. In this paper, we describe the concept of cloud computing and present the architecture of cloud computing, combining the features of e-retailing. In addition, we propose a strategy for implementing cloud computing with e-retailing. Finally, we explain the benefits from the architecture.

Keywords: architecture, cloud computing, e-retailing, internet-based

Procedia PDF Downloads 396
2795 Pulmonary Complications of Dengue Infection

Authors: Shilpa Avarebeel

Abstract:

Background: India is one of the seven identified countries in South-East Asia region, regularly reporting dengue infection and may soon transform into a major niche for dengue epidemics. Objective: To study the clinical profile of dengue in our setting with special reference to respiratory complication. Study design: Descriptive and exploratory study, for one year in 2014. All patients confirmed as dengue infection were followed and their clinical profile, along with outcome was determined. Study proforma was designed based on the objective of the study and it was pretested and used after modification. Data was analyzed using statistical software SPSS-Version 16. Data were expressed as mean ±S .D for parametric variables and actual frequencies or percentage for non-parametric data. Comparison between groups was done using students’ t-test for independent groups, Chie square test, one-way ANOVA test, Karl Pearson’s correlation test. Statistical significance is taken at P < 0.05. Results: Study included 134 dengue positive cases. 81% had dengue fever, 18% had dengue hemorrhagic fever, and one had dengue shock syndrome. Most of the cases reported were during the month of June. Maximum number of cases was in the age group of 26-35 years. Average duration of hospital stay was less than seven days. Fever and myalgia was present in all the 134 patients, 16 had bleeding manifestation. 38 had respiratory symptoms, 24 had breathlessness, and 14 had breathlessness and dry cough. On clinical examination of patients with respiratory symptoms, all twenty-eight had hypoxia features, twenty-four had signs of pleural effusion, and four had ARDS features. Chest x-ray confirmed the same. Among the patients with respiratory symptoms, the mean platelet count was 26,537 c/cmm. There was no statistical significant difference in the platelet count in those with ARDS and other dengue complications. Average four units of platelets were transfused to all those who had ARDS in view of bleeding tendency. Mechanical ventilator support was provided for ARDS patients. Those with pleural effusion and pulmonary oedema were given NIV (non-invasive ventilation) support along with supportive care. However, steroids were given to patients with ARDS and 10 patients with signs of respiratory distress. 100%. Mortality was seen in patients with ARDS. Conclusion: Dengue has to be checked for those presenting with fever and breathlessness. Supportive treatments remain the cornerstone of treatment. Platelet transfusion has to be given only by clinical judgment. Steroids have no role except in early ARDS, which is controversial. Early NIV support helps in speedy recovery of dengue patients with respiratory distress.

Keywords: adult respiratory distress syndrome, dengue fever, non-invasive ventilation, pulmonary complication

Procedia PDF Downloads 432
2794 GIS Pavement Maintenance Selection Strategy

Authors: Mekdelawit Teferi Alamirew

Abstract:

As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes.

Keywords: pavement, flexible, maintenance, index

Procedia PDF Downloads 62
2793 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 119
2792 A Description Analysis of Mortality Rate of Human Infection with Avian Influenza A(H7N9) Virus in China

Authors: Lei Zhou, Chao Li, Ruiqi Ren, Dan Li, Yali Wang, Daxin Ni, Zijian Feng, Qun Li

Abstract:

Background: Since the first human infection with avian influenza A(H7N9) case was reported in China on 31 March 2013, five epidemics have been observed in China through February 2013 and September 2017. Though the overall mortality rate of H7N9 has remained as high as around 40% throughout the five epidemics, the specific mortality rate in Mainland China varied by provinces. We conducted a descriptive analysis of mortality rates of H7N9 cases to explore the various severity features of the disease and then to provide clues of further analyses of potential factors associated with the severity of the disease. Methods: The data for analysis originated from the National Notifiable Infectious Disease Report and Surveillance System (NNIDRSS). The surveillance system and identification procedure for H7N9 infection have not changed in China since 2013. The definition of a confirmed H7N9 case is as same as previous reports. Mortality rates of H7N9 cases are described and compared by time and location of reporting, age and sex, and genetic features of H7N9 virus strains. Results: The overall mortality rate, the male and female specific overall rates of H7N9 is 39.6% (608/1533), 40.3% (432/1072) and 38.2% (176/461), respectively. There was no significant difference between the mortality rates of male and female. The age-specific mortality rates are significantly varied by age groups (χ²=38.16, p < 0.001). The mortality of H7N9 cases in the age group between 20 and 60 (33.17%) and age group of over 60 (51.16%) is much higher than that in the age group of under 20 (5.00%). Considering the time of reporting, the mortality rates of cases which were reported in the first (40.57%) and fourth (42.51%) quarters of each year are significantly higher than the mortality of cases which were reported in the second (36.02%) and third (27.27%) quarters (χ²=75.18, p < 0.001). The geographic specific mortality rates vary too. The mortality rates of H7N9 cases reported from the Northeast China (66.67%) and Westeast China (56.52%) are significantly higher than that of H7N9 cases reported from the remained area of mainland China. The mortality rate of H7N9 cases reported from the Central China is the lowest (34.38%). The mortality rates of H7N9 cases reported from rural (37.76%) and urban (38.96%) areas are similar. The mortality rate of H7N9 cases infected with the highly pathogenic avian influenza A(H7N9) virus (48.15%) is higher than the rate of H7N9 cases infected with the low pathogenic avian influenza A(H7N9) virus (37.57%), but the difference is not statistically significant. Preliminary analyses showed that age and some clinical complications such as respiratory failure, heart failure, and septic shock could be potential risk factors associated with the death of H7N9 cases. Conclusions: The mortality rates of H7N9 cases varied by age, sex, time of reporting and geographical location in mainland China. Further in-depth analyses and field investigations of the factors associated with the severity of H7N9 cases need to be considered.

Keywords: H7N9 virus, Avian Influenza, mortality, China

Procedia PDF Downloads 243
2791 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 66
2790 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 85
2789 Principal Component Analysis Applied to the Electric Power Systems – Practical Guide; Practical Guide for Algorithms

Authors: John Morales, Eduardo Orduña

Abstract:

Currently the Principal Component Analysis (PCA) theory has been used to develop algorithms regarding to Electric Power Systems (EPS). In this context, this paper presents a practical tutorial of this technique detailed their concept, on-line and off-line mathematical foundations, which are necessary and desirables in EPS algorithms. Thus, features of their eigenvectors which are very useful to real-time process are explained, showing how it is possible to select these parameters through a direct optimization. On the other hand, in this work in order to show the application of PCA to off-line and on-line signals, an example step to step using Matlab commands is presented. Finally, a list of different approaches using PCA is presented, and some works which could be analyzed using this tutorial are presented.

Keywords: practical guide; on-line; off-line, algorithms, faults

Procedia PDF Downloads 563
2788 Comparing Community Detection Algorithms in Bipartite Networks

Authors: Ehsan Khademi, Mahdi Jalili

Abstract:

Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.

Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks

Procedia PDF Downloads 625
2787 CFD Effect of the Tidal Grating in Opposite Directions

Authors: N. M. Thao, I. Dolguntseva, M. Leijon

Abstract:

Flow blockages referring to the increase in flow are considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. Computational Fluid Dynamic simulation studies the flow characteristics by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinct features of flow velocity between “convergent” and “divergent” grating placements are up to in confined conditions. Furthermore, the velocity in case of granting is higher than that of the divergent grating.

Keywords: marine current energy, converter, turbine granting, RANS simulation, water flow velocity

Procedia PDF Downloads 409
2786 A Study on the Difficulties and Countermeasures of Uyghur Students’ English Learning in Hotan District, Xinjiang

Authors: Tingting Zou

Abstract:

This paper firstly presents an overview of the situation of Xinjiang and Hotan, and describes the current status and features of Uyghur students’ English education. Then it summarizes the research on the theories of Third Language Acquisition and Foreign Language Learning Motivation at home and abroad. Further, through the data collected by the questionnaire, the paper points out the three main problems and causes of Uyghur students’ English learning in Hotan, Xinjiang. Finally, the paper draws a conclusion and puts forward some suggestions on how to improve their English learning quality based on the theory of Foreign Language Learning Motivation.

Keywords: countermeasures and difficulties, English learning, Hotan Xinjiang, Uyghur students

Procedia PDF Downloads 96
2785 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
2784 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites

Authors: Sanaa I. Abu Alasal, Madleen M. Esbeih, Eman R. Fayyad, Rami S. Gharaibeh, Mostafa Z. Ali, Ahmed A. Freewan, Monther M. Jamhawi

Abstract:

This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.

Keywords: meshes, point clouds, surface reconstruction protocols, 3D reconstruction

Procedia PDF Downloads 457
2783 The Libyc Writing

Authors: S. Ait Ali Yahia

Abstract:

One of the main features of the Maghreb is its linguistic richness. The multilingualism is a fact which always marked the Maghreb since the beginning of the history up to know. Since the arrival of the Phoenicians, followed by the Carthaginians, Romans, and Arabs, etc, there was a social group in the Maghreb which controlled two kinds of idioms. The libyc one remained, despite everything, the local language used by the major part of the population. This language had a support of written transmission attested by many inscriptions. Among all the forms of the Maghreb writing, this alphabet, however, continues to cause a certain number of questions about the origin and the date of its appearance. The archaeological, linguistic and historical data remain insufficient to answer these questions. This did not prevent the researchers from giving an opinion. In order to answer these questions we will expose here the various assumptions adopted by various authors who are founded on more or less explicit arguments. We will also speak about the various forms taken by the libyc writing during antiquity.

Keywords: the alphabet libyc, Eastern libyc, Western libyc, multilingualism

Procedia PDF Downloads 302
2782 Feasiblity of Replacing Inductive Instrument Transformers with Non-Conventional Intrument Transformers to replace

Authors: David A. Wallace, Salakjit J. Nilboworn

Abstract:

Secure and reliable transmission and distribution of electrical power is crucial in today’s ever-increasing demand for electricity. Traditional methods of protecting the electrical grid have relied on relaying systems receiving voltage and current inputs from inductive instruments transformers (IT). This method has provided robust and stable performance throughout the years. Today with the advent of new non-conventional transformers (NCIT) and sensors, the electrical landscape is changing. These new systems have to ability to provide the same electrical performance as traditional instrument transformers with the added features of data acquisition, communication, smaller footprint, lower cost and resistance to GMD/GIC events.

Keywords: non-conventional instrument transformers, digital substations, smart grids, micro-grids

Procedia PDF Downloads 82
2781 Anatomical Survey for Text Pattern Detection

Authors: S. Tehsin, S. Kausar

Abstract:

The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.

Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction

Procedia PDF Downloads 444
2780 Development of Intelligent Smart Multi Tracking Agent System to Support of Logistics Safety

Authors: Umarov Jamshid, Ju-Su Kim, Hak-Jun Lee, Man-Kyo Han, Ryum-Duck Oh

Abstract:

Recently, it becomes convenient to identify the location information of cargos by using GPS and wireless communication technologies. The development of IoT technologies and tracking system allows us to confirm site situation on an ad hoc basis in all the industries and social environments. Moreover, it allows us to apply IT technologies to a manageable extent. However, there have been many limitations for using the system due to the difficulty of identifying location information in real time and also due to the simple features. To globalize the logistics related tracking system, it is required to conduct a study to resolve the aforementioned problem. On that account, this paper designed and developed the IoT and RTLS based intelligent multi tracking agent system for more secure, accurate and reliable transportation in relation to logistics.

Keywords: GPS, tracking agent system, IoT, RTLS, Logistics

Procedia PDF Downloads 646
2779 Harmonising Ecology, Emotions and Economy: Case Study of Govardhan Ecovillage

Authors: Gauranga Das

Abstract:

People in cities have prosperity but there is immense pollution, chaos in the mind, anxiety and turbulence. People in the villages experience pristine pure environment but they also experience poverty. There is a need to find out ways by which the cities and the villages can complement each other through their strengths and take care of each other’s weaknesses. In order to do this, the case study of Govardhan Ecovillage has been explored in this paper. All its environment, social and economic initiatives along with eco-tourism and wellness features are being analyzed. The analysis shows that Govardhan Ecovillage is successfully able to harmonize its different initiatives and provide a package which has created a win-win solution for the city people and also the villagers. Such kind of Eco-tourism initiatives should be supported and replicated in other places in the world to benefit everyone.

Keywords: sustainability, ecotourism, ecology, rural development, wellness, biodiversity

Procedia PDF Downloads 252
2778 Metadiscourse in EFL, ESP and Subject-Teaching Online Courses in Higher Education

Authors: Maria Antonietta Marongiu

Abstract:

Propositional information in discourse is made coherent, intelligible, and persuasive through metadiscourse. The linguistic and rhetorical choices that writers/speakers make to organize and negotiate content matter are intended to help relate a text to its context. Besides, they help the audience to connect to and interpret a text according to the values of a specific discourse community. Based on these assumptions, this work aims to analyse the use of metadiscourse in the spoken performance of teachers in online EFL, ESP, and subject-teacher courses taught in English to non-native learners in higher education. In point of fact, the global spread of Covid 19 has forced universities to transition their in-class courses to online delivery. This has inevitably placed on the instructor a heavier interactional responsibility compared to in-class courses. Accordingly, online delivery needs greater structuring as regards establishing the reader/listener’s resources for text understanding and negotiating. Indeed, in online as well as in in-class courses, lessons are social acts which take place in contexts where interlocutors, as members of a community, affect the ways ideas are presented and understood. Following Hyland’s Interactional Model of Metadiscourse (2005), this study intends to investigate Teacher Talk in online academic courses during the Covid 19 lock-down in Italy. The selected corpus includes the transcripts of online EFL and ESP courses and subject-teachers online courses taught in English. The objective of the investigation is, firstly, to ascertain the presence of metadiscourse in the form of interactive devices (to guide the listener through the text) and interactional features (to involve the listener in the subject). Previous research on metadiscourse in academic discourse, in college students' presentations in EAP (English for Academic Purposes) lessons, as well as in online teaching methodology courses and MOOC (Massive Open Online Courses) has shown that instructors use a vast array of metadiscoursal features intended to express the speakers’ intentions and standing with respect to discourse. Besides, they tend to use directions to orient their listeners and logical connectors referring to the structure of the text. Accordingly, the purpose of the investigation is also to find out whether metadiscourse is used as a rhetorical strategy by instructors to control, evaluate and negotiate the impact of the ongoing talk, and eventually to signal their attitudes towards the content and the audience. Thus, the use of metadiscourse can contribute to the informative and persuasive impact of discourse, and to the effectiveness of online communication, especially in learning contexts.

Keywords: discourse analysis, metadiscourse, online EFL and ESP teaching, rhetoric

Procedia PDF Downloads 129
2777 High Power Low Loss CMOS SPDT Antenna Switch for LTE-A Front End Module

Authors: Ki-Jin Kim, Suk-Hui LEE, Sanghoon Park, K. H. Ahn

Abstract:

A high power, low loss asymmetric single pole double through(SPDT) antenna switch for LTE-A Front-End Module(FEM) is presented in this paper by using CMOS technology. For the usage of LTE-A applications, low loss and high linearity are the key features which are very challenging works under CMOS process. To enhance insertion loss(IL) and power handling capability, this paper adopts asymmetric Transmitter (TX) and RX (Receiver) structure, floating body technique, multi-stacked structure, and feed forward capacitor technique. The designed SPDT switch shows TX IL 0.34 dB, RX IL 0.73 dB, P1dB 38.9 dBm at 0.9 GHz and TX IL 0.37 dB, RX IL 0.95 dB, P1dB 39.1 dBm at 2.5 GHz respectively.

Keywords: CMOS switch, SPDT switch, high power CMOS switch, LTE-A FEM

Procedia PDF Downloads 364
2776 Energy Unchained: An Analysis of Affordances of the Blockchain Technology in the Energy Sector

Authors: Jonas Kahlert

Abstract:

Blockchain technology has gained importance and momentum in the energy sector. Yet, there is no structured analysis of how specific features of the blockchain technology can create value in the energy sector. We employ a qualitative analysis on insights gained from the current literature and expert interviews. Along the four most prevalent use cases of blockchain technology in the energy sector, we discuss the potential of blockchain technology to support a transition to a more affordable, sustainable and reliable energy system. We show that in its current state, blockchain and adjacent technologies are not a necessity but a sufficiency towards this transition. We also show how current limitations of the blockchain and adjacent technologies can be even counterproductive. Finally, we discuss implications for policy makers and managers.

Keywords: blockchain technology, affordance theory, energy trilemma, sustainability

Procedia PDF Downloads 484