Search results for: magnetic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26287

Search results for: magnetic data

25237 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case

Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz

Abstract:

The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.

Keywords: catalyst, upgrading, aquathermolysis, steam

Procedia PDF Downloads 110
25236 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 369
25235 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 13
25234 Development of a Pain Detector Using Microwave Radiometry Method

Authors: Nanditha Rajamani, Anirudhaa R. Rao, Divya Sriram

Abstract:

One of the greatest difficulties in treating patients with pain is the highly subjective nature of pain sensation. The measurement of pain intensity is primarily dependent on the patient’s report, often with little physical evidence to provide objective corroboration. This is also complicated by the fact that there are only few and expensive existing technologies (Functional Magnetic Resonance Imaging-fMRI). The need is thus clear and urgent for a reliable, non-invasive, non-painful, objective, readily adoptable, and coefficient diagnostic platform that provides additional diagnostic information to supplement its current regime with more information to assist doctors in diagnosing these patients. Thus, our idea of developing a pain detector was conceived to take a step further the detection and diagnosis of chronic and acute pain.

Keywords: pain sensor, microwave radiometery, pain sensation, fMRI

Procedia PDF Downloads 456
25233 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
25232 Field-Free Orbital Hall Current-Induced Deterministic Switching in the MO/Co₇₁Gd₂₉/Ru Structure

Authors: Zelalem Abebe Bekele, Kun Lei, Xiukai Lan, Xiangyu Liu, Hui Wen, Kaiyou Wang

Abstract:

Spin-polarized currents offer an efficient means of manipulating the magnetization of a ferromagnetic layer for big data and neuromorphic computing. Research has shown that the orbital Hall effect (OHE) can produce orbital currents, potentially surpassing the counter spin currents induced by the spin Hall effect. However, it’s essential to note that orbital currents alone cannot exert torque directly on a ferromagnetic layer, necessitating a conversion process from orbital to spin currents. Here, we present an efficient method for achieving perpendicularly magnetized spin-orbit torque (SOT) switching by harnessing the localized orbital Hall current generated from a Mo layer within a Mo/CoGd device. Our investigation reveals a remarkable enhancement in the interface-induced planar Hall effect (PHE) within the Mo/CoGd bilayer, resulting in the generation of a z-polarized planar current for manipulating the magnetization of CoGd layer without the need for an in-plane magnetic field. Furthermore, the Mo layer induces out-of-plane orbital current, boosting the in-plane and out-of-plane spin polarization by converting the orbital current into spin current within the dual-property CoGd layer. At the optimal Mo layer thickness, a low critical magnetization switching current density of 2.51×10⁶ A cm⁻² is achieved. This breakthrough opens avenues for all-electrical control energy-efficient magnetization switching through orbital current, advancing the field of spin-orbitronics.

Keywords: spin-orbit torque, orbital hall effect, spin hall current, orbital hall current, interface-generated planar hall current, anisotropic magnetoresistance

Procedia PDF Downloads 55
25231 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 294
25230 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.

Keywords: IoT, fog, cloud, data analysis, data privacy

Procedia PDF Downloads 99
25229 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 414
25228 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol

Authors: Inkyu Kim, SangMan Moon

Abstract:

This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.

Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application

Procedia PDF Downloads 392
25227 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
25226 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 813
25225 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 265
25224 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study

Authors: Zeba Mahmood

Abstract:

The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.

Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining

Procedia PDF Downloads 538
25223 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 350
25222 Rashba Spin Orbit Interaction Effect on Multiphoton Optical Transitions in a Quantum Dot for Bioimaging

Authors: Pradip Kumar Jha, Manoj Kumar

Abstract:

We demonstrate in this work the effect of Rashba spin orbit interaction on multiphoton optical transitions of a quantum dot in the presence of THz laser field and external static magnetic field. This combination is solved by accurate non-perturbative Floquet theory. Investigations are made for the optical response of intraband transition between the various states of the conduction band with spin flipping. Enhancement and power broadening observed for excited states probabilities with increase of external fields are directly linked to the emission spectra of QD and will be useful for making future bioimaging devices.

Keywords: bioimaging, multiphoton processes, spin orbit interaction, quantum dot

Procedia PDF Downloads 480
25221 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 580
25220 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach

Authors: Jerry Q. Cheng

Abstract:

Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.

Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing

Procedia PDF Downloads 165
25219 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 344
25218 Adoption of Big Data by Global Chemical Industries

Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta

Abstract:

The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.

Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science

Procedia PDF Downloads 85
25217 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data

Procedia PDF Downloads 412
25216 Classifications of Neuroscientific-Radiological Findings on “Practicing” in Mathematics Learning

Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke

Abstract:

Many people know ‘Mathematics needs practice!’ statement or similar ones from their mathematics lessons. It seems important to practice when learning mathematics. At the same time, it also seems important to practice how to learn mathematics. This paper places neuroscientific-radiological findings on “practicing” while learning mathematics in a context of mathematics education. To accomplish this, we use a literature-based discussion of our case study on practice. We want to describe neuroscientific-radiological findings in the context of mathematics education and point out stimulating connections between both perspectives. From a connective perspective we expect incentives that lead discussions in future research in the field of mathematics education.

Keywords: functional magnetic resonance imaging, fMRI, education, mathematics learning, practicing

Procedia PDF Downloads 340
25215 Improved Qualitative Modeling of the Magnetization Curve B(H) of the Ferromagnetic Materials for a Transformer Used in the Power Supply for Magnetron

Authors: M. Bassoui, M. Ferfra, M. Chrayagne

Abstract:

This paper presents a qualitative modeling for the nonlinear B-H curve of the saturable magnetic materials for a transformer with shunts used in the power supply for the magnetron. This power supply is composed of a single phase leakage flux transformer supplying a cell composed of a capacitor and a diode, which double the voltage and stabilize the current, and a single magnetron at the output of the cell. A procedure consisting of a fuzzy clustering method and a rule processing algorithm is then employed for processing the constructed fuzzy modeling rules to extract the qualitative properties of the curve.

Keywords: B(H) curve, fuzzy clustering, magnetron, power supply

Procedia PDF Downloads 236
25214 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 344
25213 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 316
25212 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 124
25211 Hydrogeophysical Investigations And Mapping of Ingress Channels Along The Blesbokspruit Stream In The East Rand Basin Of The Witwatersrand, South Africa

Authors: Melvin Sethobya, Sithule Xanga, Sechaba Lenong, Lunga Nolakana, Gbenga Adesola

Abstract:

Mining has been the cornerstone of the South African economy for the last century. Most of the gold mining in South Africa was conducted within the Witwatersrand basin, which contributed to the rapid growth of the city of Johannesburg and capitulated the city to becoming the business and wealth capital of the country. But with gradual depletion of resources, a stoppage in the extraction of underground water from mines and other factors relating to survival of the mining operations over a lengthy period, most of the mines were abandoned and left to pollute the local waterways and groundwater with toxins, heavy metal residue and increased acid mine drainage ensued. The Department of Mineral Resources and Energy commissioned a project whose aim is to monitor, maintain, and mitigate the adverse environmental impacts of polluted water mine water flowing into local streams affecting local ecosystems and livelihoods downstream. As part of mitigation efforts, the diagnosis and monitoring of groundwater or surface water polluted sites has become important. Geophysical surveys, in particular, Resistivity and Magnetics surveys, were selected as some of most suitable techniques for investigation of local ingress points along of one the major streams cutting through the Witwatersrand basin, namely the Blesbokspruit, which is found in the eastern part of the basin. The aim of the surveys was to provide information that could be used to assist in determining possible water loss/ ingress from the Blesbokspriut stream. Modelling of geophysical surveys results offered an in-depth insight into the interaction and pathways of polluted water through mapping of possible ingress channels near the Blesbokspruit. The resistivity - depth profile of the surveyed site exhibit a three(3) layered model with low resistivity values (10 to 200 Ω.m) overburden, which is underlain by a moderate resistivity weathered layer (>300 Ω.m), which sits on a more resistive crystalline bedrock (>500 Ω.m). Two locations of potential ingress channels were mapped across the two traverses at the site. The magnetic survey conducted at the site mapped a major NE-SW trending regional linearment with a strong magnetic signature, which was modeled to depth beyond 100m, with the potential to act as a conduit for dispersion of stream water away from the stream, as it shared a similar orientation with the potential ingress channels as mapped using the resistivity method.

Keywords: eletrictrical resistivity, magnetics survey, blesbokspruit, ingress

Procedia PDF Downloads 63
25210 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 163
25209 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy

Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko

Abstract:

Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.

Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver

Procedia PDF Downloads 72
25208 Nickel Substituted Cobalt Ferrites via Ceramic Rout Approach: Exploration of Structural, Optical, Dielectric and Electrochemical Behavior for Pseudo-Capacitors

Authors: Talat Zeeshan

Abstract:

Nickel doped cobalt ferrites 〖(Co〗_(1-x) Ni_x Fe_2 O_4) has been synthesized with the variation of Ni dopant (x=0.0, 0.25, 0.50, 0.75) by ball milling route at 150 RPM for 3hrs. The impact of nickel on Co ferrites has been investigated by using various approaches of characterization such as XRD (X-Ray diffraction), SEM (Scanning electron microscopy, FTIR (Fourier transform infrared spectroscopy), UV-Vis spectroscopy, LCR meter and CV (Cyclic voltammetry). The cubic structure of the nanoparticles confirmed by the XRD data, the increase in Ni dopant reduces the crystallite size. FTIR spectroscopy has been employed in order to analyze various functional groups. The agglomerated morphology of the particles has been observed by SEM images.. UV-Vis analysis reveals that the optical energy bandgap progressively rises with nickel doping, from 1.50 eV to 2.02 eV. The frequency range of 20 Hz to 20 MHz has been used for dielectric evaluation, where dielectric parameters such as AC conductivity, tan loss, and dielectric constant are examined. When the frequency of the applied AC field rises the AC conductivity increases, while the dielectric constant and tan loss constantly decrease. The pseudocapacitive behavior revealed by the CV curve showed that at high scan rates, specific capacitance values (Cs) are low, whereas at low scan rates, they are high. At the low scan rate of 10 mVs-1, the maximum specific capacitance of 244.4 Fg-1 has been attained at x = 0.75. Nickel doped cobalt ferrites electrodes have incredible electrochemical characteristics that make them a promising option for pseudo capacitor applications.

Keywords: lattice parameters, crystallite size, pseudo capacitor, band gap: magnetic material, energy band gap

Procedia PDF Downloads 17