Search results for: distributed database systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12419

Search results for: distributed database systems

1679 The Effects of the Parent Training Program for Obesity Reduction on Child Waist Circumference and Health Behaviors of Pre-School Children at the Samut-Songkhram Kindergarten School, Samut-Songkhram Province, Thailand

Authors: Muntanavadee Maytapattana

Abstract:

This research aims to study the effects of the Parent Training Program for Obesity Reduction (PTPOR) on child waist circumference and health behaviors of pre-school children at the Samut-Songkhram kindergarten school, Samut-Songkhram province, Thailand. The objective of this research is to evaluate the effectiveness of the PTPOR on child waist circumference and health behaviors of the pre-school children. The conceptual framework of this study is developed on the basis of the Ecological Systems Theory (EST), not only do the individual factors such as child characteristics and child risk factors contribute to the child’s weight status, but also other factors such as parenting style and family characteristics, as well as community and demographic factors. This research is a quasi-experimental study. Participants were pre-school overweight and obese children and their parents. Forty-one parent-child dyads were recruited into the program. Parents participated in two sessions including an educational session and a group discussion session. Research methodology uses Paired-Samples t-test to determine the difference between groups in the mean scores of the outcome variables of the children and parents. The research results show that there was significant difference between child waist circumferences mean score at the baseline and finishing the program at the 0.01 level (p = 0.001), mean score of the child waist circumference was decrease after finishing the program. And there was no significant difference between child exercise health behaviors mean score at the baseline and finishing the program at the 0.05 level; however, mean score of the child exercise behavior was increase after finishing the program. Meanwhile, there was significant difference between child dietary health behavior mean score at the baseline and finishing the program at the 0.01 level (p = 0.001), mean score of the child dietary was increase after finishing the program.

Keywords: PTPOR, child waist circumference, child health behaviors, pre-school children

Procedia PDF Downloads 573
1678 The Digital Living Archive and the Construction of a Participatory Cultural Memory in the DARE-UIA Project: Digital Environment for Collaborative Alliances to Regenerate Urban Ecosystems in Middle-Sized Cities

Authors: Giulia Cardoni, Francesca Fabbrii

Abstract:

Living archives perform a function of social memory sharing, which contributes to building social bonds, communities, and identities. This potential lies in the ability to live archives to put together an archival function, which allows the conservation and transmission of memory with an artistic, performative and creative function linked to the present. As part of the DARE-UIA (Digital environment for collaborative alliances to regenerate urban ecosystems in middle-sized cities) project the creation of a living digital archive made it possible to create a narrative that would consolidate the cultural memory of the Darsena district of the city of Ravenna. The aim of the project is to stimulate the urban regeneration of a suburban area of a city, enhancing its cultural memory and identity heritage through digital heritage tools. The methodology used involves various digital storytelling actions necessary for the overall narrative using georeferencing systems (GIS), storymaps and 3D reconstructions for a transversal narration of historical content such as personal and institutional historical photos and to enhance the industrial archeology heritage of the neighborhood. The aim is the creation of an interactive and replicable narrative in similar contexts to the Darsena district in Ravenna. The living archive, in which all the digital contents are inserted, finds its manifestation towards the outside in the form of a museum spread throughout the neighborhood, making the contents usable on smartphones via QR codes and totems inserted on-site, creating thematic itineraries spread around the neighborhood. The construction of an interactive and engaging digital narrative has made it possible to enhance the material and immaterial heritage of the neighborhood by recreating the community that has historically always distinguished it.

Keywords: digital living archive, digital storytelling, GIS, 3D, open-air museum, urban regeneration, cultural memory

Procedia PDF Downloads 112
1677 Influence of Recycled Polymer-Based Aggregates on Mechanical Properties of Polymer Concrete

Authors: Ahmet Kurklu, Abdussamed Sarp, Gokmen Arikan, Akin Eren, Arif Ulu, Ferit Cakir

Abstract:

Our natural resources are diminishing day by day with the needs of the growing world population. There is a danger that these resources will be depleted if they are not used in a controlled manner. As a result of the rapid increase in the consumption of limited natural resources, one of the issues where studies have gained importance is recycling. Many countries have carried out various research and development activities on recycling and reuse to prevent wastage of resources. For sustainable and healthy living, the limited amount of raw material resources in nature should be consumed consciously, and the necessary awareness should be given for recycling activities. One of the sectors where the consumption of raw materials is high is the construction sector. With the changing consumption habits of the evolving technology in the construction sector, the need to use special concrete along with the normal concrete has arisen. With the increasing need for specialty concretes, polymer concrete, which was discovered in the early 1900s, has evolved to the present day. Polymer concretes are special concretes with high strength, water impermeability, resistance to chemical action, and low surface roughness. Thanks to these properties, they find wide applications in many fields such as swimming pools, drainage systems, repair works. In the study, the effect of using recycled aggregates instead of natural aggregates in the production of polymer concrete on the performance of polymer concrete is investigated. In the experiments conducted for this purpose, the use of natural aggregate is reduced at certain rates, and instead, recycled aggregate is added at the same rate. The recycled aggregate to be used in the study is obtained from the polymer concrete drainage channel production facility of Mert Casting Co., Istanbul, Turkey. In order to clearly observe the effect of recycled materials on the product in the study, the other components (resin, hardener, accelerator, and additive) are kept constant in the concrete mix. In the study, fresh and hardened concrete tests are to be carried out on the mixes to be prepared.

Keywords: concrete, mechanical properties, polymer concrete, recycle aggregate

Procedia PDF Downloads 148
1676 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 110
1675 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman

Abstract:

The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen

Procedia PDF Downloads 301
1674 The Tramway in French Cities: Complication of Public Spaces and Complexity of the Design Process

Authors: Elisa Maître

Abstract:

The redeployment of tram networks in French cities has considerably modified public spaces and the way citizens use them. Above and beyond the image that trams have of contributing to the sustainable urban development, the question of safety for users in these spaces has not been studied much. This study is based on an analysis of use of public spaces laid out for trams, from the standpoint of legibility and safety concerns. The study also examines to what extent the complexity of the design process, with many interactions between numerous and varied players in this process has a role in the genesis of these problems. This work is mainly based on the analysis of links between the uses of these re-designed public spaces (through observations, interviews of users and accident studies) and the analysis of the design conditions and processes of the projects studied (mainly based on interviews with the actors of these projects). Practical analyses were based three points of view: that of the planner, that of the user (based on observations and interviews) and that of the road safety expert. The cities of Montpellier, Marseille and Nice are the three fields of study on which the demonstration of this thesis is based. On part, the results of this study allow showing that the insertion of tram poses some problems complication of public areas of French cities. These complications related to the restructuring of public spaces for the tram, create difficulties of use and safety concerns. On the other hand, interviews depth analyses, fully transcribed, have led us to develop particular dysfunction scenarios in the design process. These elements lead to question the way the legibility and safety of these new forms of public spaces are taken into account. Then, an in-depth analysis of the design processes of public spaces with trams systems would also be a way of better understanding the choices made, the compromises accepted, and the conflicts and constraints at work, weighing on the layout of these spaces. The results presented concerning the impact that spaces laid out for trams have on the difficulty of use, suggest different possibilities for improving the way in which safety for all users is taken into account in designing public spaces.

Keywords: public spaces, road layout, users, design process of urban projects

Procedia PDF Downloads 231
1673 Impact of Air Flow Structure on Distinct Shape of Differential Pressure Devices

Authors: A. Bertašienė

Abstract:

Energy harvesting from any structure makes a challenge. Different structure of air/wind flows in industrial, environmental and residential applications emerge the real flow investigation in detail. Many of the application fields are hardly achievable to the detailed description due to the lack of up-to-date statistical data analysis. In situ measurements aim crucial investments thus the simulation methods come to implement structural analysis of the flows. Different configurations of testing environment give an overview how important is the simple structure of field in limited area on efficiency of the system operation and the energy output. Several configurations of modeled working sections in air flow test facility was implemented in CFD ANSYS environment to compare experimentally and numerically air flow development stages and forms that make effects on efficiency of devices and processes. Effective form and amount of these flows under different geometry cases define the manner of instruments/devices that measure fluid flow parameters for effective operation of any system and emission flows to define. Different fluid flow regimes were examined to show the impact of fluctuations on the development of the whole volume of the flow in specific environment. The obtained results rise the discussion on how these simulated flow fields are similar to real application ones. Experimental results have some discrepancies from simulation ones due to the models implemented to fluid flow analysis in initial stage, not developed one and due to the difficulties of models to cover transitional regimes. Recommendations are essential for energy harvesting systems in both, indoor and outdoor cases. Further investigations aim to be shifted to experimental analysis of flow under laboratory conditions using state-of-the-art techniques as flow visualization tool and later on to in situ situations that is complicated, cost and time consuming study.

Keywords: fluid flow, initial region, tube coefficient, distinct shape

Procedia PDF Downloads 342
1672 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 81
1671 A Method for Precise Vertical Position of the Implant When Using Computerized Surgical Guides and Bone Reduction

Authors: Abraham Finkelman

Abstract:

Computerized Surgical Guides have been proven to be a predictable way to perform dental implants, with a relatively high accuracy in comparison to a treatment plan. When using the CSG Bone supported, it allows us to make the necessary changes of the hard tissue prior to the implant placement and after the implant placement. The CSG gives us an accurate position for the drilling, and during the implant placement it allows us to alter the vertical position of the implant altering the final position of the abutment and avoiding any risk of any damage to the adjacent anatomical structures. Any Changes required to the bone level can be done prior to the fixation of the CSG using a reduction guide, which incur extra surgical fees and the need of a second surgical guide. Any changes of the bone level after the implant placement are at the risk of damaging the implant neck surface. The technique consists of a universal system that allows us to remove the excess bone around the implant sockets prior to the implant placement which then enables us to place the implant in the vertical position with accuracy as planned with the CSG. The systems consist of a hollow pin of different sizes and diameters. Depending on the implant system that we are using. Length sizes are from 6mm-16mm and a diameter of 2.6mm-4.8mm. Upon the completion of the drilling, the pin is then inserted into the implant socket-using the insertion tool. Once the insertion tool has unscrewed the pin, we can continue with the bone reduction. The bone reduction can be done using conventional methods upon the removal of all the excess bone around the pin. The insertion tool is then screwed into the pin and the pin is then removed. We now, have the new bone level at the crest of the implant socket which is our mark for the vertical position of the implant. In some cases, when we are locating the implant very close to anatomical structures, any form of deviation to the vertical position of the implant during the surgery, can cause damage to such anatomical structures, creating irreversible damages such as paresthesia or dysesthesia of the mandibular nerve. If we are planning for immediate loading and we have done our temporary restauration in base of our computerized plan, deviation in the vertical position of the implant will affect the position of the abutment, affecting the accuracy of the temporary prosthesis, extending the working time till we adapt the prosthesis to the new position.

Keywords: bone reduction, computer aided navigation, dental implant placement, surgical guides

Procedia PDF Downloads 332
1670 A Comparative Analysis of Conventional and Organic Dairy Supply Chain: Assessing Transport Costs and External Effects in Southern Sweden

Authors: Vivianne Aggestam

Abstract:

Purpose: Organic dairy products have steadily increased with consumer popularity in recent years in Sweden, permitting more transport activities. The main aim of this study was to compare the transport costs and the environmental emissions made by the organic and conventional dairy production in Sweden. The objective was to evaluate differences and environmental impacts of transport between the two different production systems, allowing a more transparent understanding of the real impact of transport within the supply chain. Methods: A partial attributional Life Cycle Assessment has been conducted based on a comprehensive survey of Swedish farmers, dairies and consumers regarding their transport needs and costs. Interviews addressed the farmers and dairies. Consumers were targeted through an online survey. Results: Higher transport inputs from conventional dairy transportation are mainly via feed and soil management on farm level. The regional organic milk brand illustrate less initial transport burdens on farm level, however, after leaving the farm, it had equal or higher transportation requirements. This was mainly due to the location of the dairy farm and shorter product expiry dates, which requires more frequent retail deliveries. Organic consumers tend to use public transport more than private vehicles. Consumers using private vehicles for shopping trips primarily bought conventional products for which price was the main deciding factor. Conclusions: Organic dairy products that emphasise its regional attributes do not ensure less transportation and may therefore not be a more “climate smart” option for the consumer. This suggests that the idea of localism needs to be analysed from a more systemic perspective. Fuel and regional feed efficiency can be further implemented, mainly via fuel type and the types of vehicles used for transport.

Keywords: supply chains, distribution, transportation, organic food productions, conventional food production, agricultural fossil fuel use

Procedia PDF Downloads 457
1669 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 60
1668 Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings

Authors: A. Čelan, M. Ćosić, D. Rušić, N. Kuzmanić

Abstract:

Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm3 bench scale batch cooling crystallizer with an aspect ratio (H/T) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution.

Keywords: dual impeller crystallizer, fluid flow pattern, metastable zone width, mixing time, radial impeller

Procedia PDF Downloads 197
1667 Comparison of Formation Sensitivity Gap between Islamic Maybank Indonesia and Islamic Maybank Malaysia

Authors: Puji Sucia Sukmaningrum, Achsania Hendratmi, Noven Suprayogi, Muhammad Madyan

Abstract:

Theoretically, Islamic banks in Indonesia and Malaysia not necessarily aware to the interest rate fluctuation, since they don’t use interest-based instruments. Both countries use dual banking system in which Islamic and conventional banking system are exist. This situation makes the profit-sharing level of the Islamic banks will be indirectly affected by the interest rate fluctuation from the conventional banks system. One of the risk management tools for anticipating the risk of interest rate fluctuation is gap management, which has purpose to narrow the difference between Rate Sensitive Asset (RSA) and Rate Sensitive Liability (RSL). This formed gap will give the information about the risk potential in Islamic banks which respect to the fluctuation on the interest rate. This study aims to determine the position of the gap formed at Islamic Maybank Indonesia and Islamic Maybank Malaysia, and analyze the difference in the formation of gap based on the period of sensitivity. This study is a quantitative research with comparative study using sensitivity gap analysis, independent sample t-test, and Mann-Whitney method. The data being used was secondary data from Maturity Profile contained in the Annual Financial Report of Islamic Maybank Indonesia and Islamic Maybank Malaysia from 2011 to 2015 period. The result shows that, cumulatively the formation of the gap was negative gap. From the results of independent sample t-test and Mann-Whitney, the formation of the gap in Islamic Maybank Indonesia and Islamic Maybank Malaysia for a period of sensitivity of ≤ 1 month and >1-3 months show a significant difference, while the period of sensitivity >3-12 months does not. The result shows, even though Indonesia and Malaysia using same dual banking systems, the gap values are different. The difference in debt policy between Indonesia and Malaysia also affecting the gap sensitivity in debt. In can be concluded that each country needs an appropriate gap management to support its Islamic banking performance specifically.

Keywords: assets and liability management, gap management, interest rate risk, Islamic bank

Procedia PDF Downloads 264
1666 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 45
1665 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 169
1664 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 103
1663 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control

Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin

Abstract:

The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.

Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics

Procedia PDF Downloads 77
1662 Autonomy in Healthcare Organisations: A Comparative Case Study of Middle Managers in England and Iran

Authors: Maryam Zahmatkesh

Abstract:

Middle managers form a significant occupational category in organisations. They undertake a vital role, as they sit between the operational and strategic roles. Traditionally they were acting as diplomat administrators, and were only in power to meet the demands of professionals. Following the introduction of internal market, in line with the principles of New Public Management, middle managers have been considered as change agents. More recently, in the debates of middle managers, there is emphasis on entrepreneurialism and enacting strategic role. It was assumed that granting autonomy to the local organisations and the inception of semi-autonomous hospitals (Foundation Trusts in England and Board of Trustees in Iran) would give managers more autonomy to act proactively and innovatively. This thesis explores the hospital middle managers’ perception of and responses to public management reforms (in particular, hospital autonomy) in England and Iran. In order to meet the aims of the thesis, research was undertaken within the interpretative paradigm, in line with social constructivism. Data were collected from interviews with forty-five middle managers, observational fieldwork and documentary analysis across four teaching university hospitals in England and Iran. The findings show the different ways middle managers’ autonomy is constrained in the two countries. In England, middle managers have financial and human recourses, but their autonomy is constrained by government policy and targets. In Iran, middle managers are less constrained by government policy and targets, but they do not have financial and human resources to exercise autonomy. Unbalanced autonomy causes tension and frustration for middle managers. According to neo-institutional theory, organisations are deeply embedded within social, political, economic and normative settings that exert isomorphic and internal population-level pressures to conform to existing and established modes of operation. Health systems which are seeking to devolve autonomy to middle managers must appreciate the multidimensional nature of the autonomy, as well as the wider environment that organisations are embedded, if they are about to improve the performance of managers and their organisations.

Keywords: autonomy, healthcare organisations, middle managers, new public management

Procedia PDF Downloads 313
1661 Agricultural Organized Areas Approach for Resilience to Droughts, Nutrient Cycle and Rural and Wild Fires

Authors: Diogo Pereira, Maria Moura, Joana Campos, João Nunes

Abstract:

As the Ukraine war highlights the European Economic Area’s vulnerability and external dependence on feed and food, agriculture gains significant importance. Transformative change is necessary to reach a sustainable and resilient agricultural sector. Agriculture is an important drive for bioeconomy and the equilibrium and survival of society and rural fires resilience. The pressure of (1) water stress, (2) nutrient cycle, and (3) social demographic evolution towards 70% of the population in Urban systems and the aging of the rural population, combined with climate change, exacerbates the problem and paradigm of rural and wildfires, especially in Portugal. The Portuguese territory is characterized by (1) 28% of marginal land, (2) the soil quality of 70% of the territory not being appropriate for agricultural activity, (3) a micro smallholding, with less than 1 ha per proprietor, with mainly familiar and traditional agriculture in the North and Centre regions, and (4) having the most vulnerable areas for rural fires in these same regions. The most important difference between the South, North and Centre of Portugal, referring to rural and wildfires, is the agricultural activity, which has a higher level in the South. In Portugal, rural and wildfires represent an average annual economic loss of around 800 to 1000 million euros. The WinBio model is an agrienvironmental metabolism design, with the capacity to create a new agri-food metabolism through Agricultural Organized Areas, a privatepublic partnership. This partnership seeks to grow agricultural activity in regions with (1) abandoned territory, (2) micro smallholding, (3) water and nutrient management necessities, and (4) low agri-food literacy. It also aims to support planning and monitoring of resource use efficiency and sustainability of territories, using agriculture as a barrier for rural and wildfires in order to protect rural population.

Keywords: agricultural organized areas, residues, climate change, drought, nutrients, rural and wild fires

Procedia PDF Downloads 83
1660 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone

Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg

Abstract:

Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.

Keywords: energy simulation, office building, tropical climate, zero energy buildings

Procedia PDF Downloads 185
1659 Ecodesign of Bioplastic Films for Food Packaging and Shelf-life Extension

Authors: Sónia Ribeiro, Diana Farinha, Elsa Pereira, Hélia Sales, Filipa Figueiredo, Rita Pontes, João Nunes

Abstract:

Conventional plastic impacts on Planet, natural resources contamination, human health as well as animals are the most attractive environmental and health attention. The lack of treatment in the end-of-life (EOL) phase and uncontrolled discard allows plastic to be found everywhere in the world. Food waste is increasing significantly, with a final destination to landfills. To face these difficulties, new packaging solutions are needed with the objective of prolonging the shelf-life of products as well as equipment solutions for the development of the mentioned packaging. FLUI project thus presents relevance and innovation to reach a new level of knowledge and industrial development focused in Ecodesign. Industrial equipment field for the manufacture of new packaging solutions based on biodegradable plastics films to apply in the food sector. With lesser environmental impacts and new solutions that make it possible to prevent food waste, reduce the production e consequent poor disposal of plastic of fossil origin. It will be a paradigm shift at different levels, from industry to waste treatment stations, passing through commercial agents and consumers. It can be achieved through the life cycle assessment (LCA) and ecodesign of the products, which integrates the environmental concerns in the design of the product as well as through the entire life cycle. The FLUI project aims to build a piece of new bio-PLA extrusion equipment with the incorporation of bioactive extracts through the production of flexible mono- and multi-layer functional films (FLUI systems). The biofunctional and biodegradable films will prompt the extension of packaged products’ shelf-life, reduce food waste and contribute to reducing the consumption of non-degradable fossil plastics, as well as the use of raw material from renewable sources.

Keywords: food packing, bioplastics, ecodesign, circular economy

Procedia PDF Downloads 97
1658 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 30
1657 Sustainable Mitigation of Urban Stormwater Runoff: The Applicability of Green Infrastructure Approach in Finnish Climate

Authors: Rima Almalla

Abstract:

The purpose of the research project in Geography is to evaluate the applicability of urban green infrastructure approach in Finnish climate. The key focus will be on the operation and efficiency of green infrastructure on urban stormwater management. Green infrastructure approach refers to the employment of sufficient green covers as a modern and smart environmental solution to improve the quality of urban environments. Green infrastructure provides a wide variety of micro-scale ecosystem services, such as stormwater runoff management, regulation of extreme air temperatures, reduction of energy consumption, plus a variety of social benefits and human health and wellbeing. However, the cold climate of Finland with seasonal ground frost, snow cover and relatively short growing season bring about questions of whether green infrastructure works as efficiently as expected. To tackle this question, green infrastructure solutions will be studied and analyzed with manifold methods: stakeholder perspectives regarding existing and planned GI solutions will be collected by web based questionnaires, semi structured interviews and group discussions, and analyzed in both qualitative and quantitative methods. Targeted empirical field campaigns will be conducted on selected sites. A systematic literature review with global perspective will support the analyses. The findings will be collected, compiled and analyzed using geographic information systems (GIS). The findings of the research will improve our understanding of the functioning of green infrastructure in the Finnish environment in urban stormwater management, as a landscape element for citizens’ wellbeing, and in climate change mitigation and adaptation. The acquired information will be shared with stakeholders in interactive co-design workshops. As green covers have great demand and potential globally, the conclusions will have relevance in other cool climate regions and may support Finnish business in green infrastructure sector.

Keywords: climate change adaptation, climate change, green infrastructure, stormwater

Procedia PDF Downloads 170
1656 A Cooperative Signaling Scheme for Global Navigation Satellite Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.

Keywords: global navigation satellite network, cooperative signaling, data combining, nodes

Procedia PDF Downloads 284
1655 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: color depth sensor, human computer interface, interactive surface, spatial augmented reality

Procedia PDF Downloads 127
1654 The Role of Religion in the Foundation of State [Pakistan]

Authors: Hafiz Atif Iqbal

Abstract:

It is a confirmed historical fact that Pakistan is an ideological state, and religion has played a very important and vital role in the establishment of Pakistan. This is the reason why the slogan "What does Pakistan mean is "la ilaha illa Allah" is embedded in the heart of every Muslim. This slogan became so popular in the dimensions of India that Movement of Pakistan and this slogan became inseparable, and that is why Quaid-e-Azam said: "Twenty-five percent share in Movement of Pakistan belongs to the creator of this slogan, Asghar Soudai Sialkoti." This slogan later formed the basis of the two-nation theory, whereby the Hindus and Muslims of the sub-continent were declared to be two separate and complete nations, completely different from each other in terms of their religion, affairs, dress, lifestyle, and values. In this regard, on March 23, 1940, at the historic meeting of the Muslim League in Lahore, in which the Lahore Resolution was passed, Quaid-e-Azam said: Islam and Hinduism are not just religions, but actually two different social systems. Therefore, this desire should be called a dream and a dream that Hindus and Muslims will be able to create a common nationality together. These people do not marry each other, nor do they eat at the same table. I say in a nutshell that they belong to two different civilizations, and these civilizations are based on concepts and facts that contradict each other and are against each other. Quaid-e-Azam, while addressing Peshawar in January 1948, said: "We did not demand Pakistan just to get a separate piece of land, but we wanted to get a laboratory where we can test the principles of Islam. The distinction of the concept of Islamic government should be kept in mind that the authority of obedience and loyalty in it is God Almighty, whose practical means of compliance are the rules and principles of the Holy Quran. Only the rules of the Holy Quran can determine the limits of our freedom and restrictions in the state and society. In other words, the Islamic government is the government of Quranic principles and rules. All these facts make it clear that religion has played a fundamental and important role in the establishment of Pakistan.

Keywords: la ilaha illa allah, asghar soudai sialkoti, lahore resolution, quaid-e-azam

Procedia PDF Downloads 104
1653 Clinical Advice Services: Using Lean Chassis to Optimize Nurse-Driven Telephonic Triage of After-Hour Calls from Patients

Authors: Eric Lee G. Escobedo-Wu, Nidhi Rohatgi, Fouzel Dhebar

Abstract:

It is challenging for patients to navigate through healthcare systems after-hours. This leads to delays in care, patient/provider dissatisfaction, inappropriate resource utilization, readmissions, and higher costs. It is important to provide patients and providers with effective clinical decision-making tools to allow seamless connectivity and coordinated care. In August 2015, patient-centric Stanford Health Care established Clinical Advice Services (CAS) to provide clinical decision support after-hours. CAS is founded on key Lean principles: Value stream mapping, empathy mapping, waste walk, takt time calculations, standard work, plan-do-check-act cycles, and active daily management. At CAS, Clinical Assistants take the initial call and manage all non-clinical calls (e.g., appointments, directions, general information). If the patient has a clinical symptom, the CAS nurses take the call and utilize standardized clinical algorithms to triage the patient to home, clinic, urgent care, emergency department, or 911. Nurses may also contact the on-call physician based on the clinical algorithm for further direction and consultation. Since August 2015, CAS has managed 228,990 calls from 26 clinical specialties. Reporting is built into the electronic health record for analysis and data collection. 65.3% of the after-hours calls are clinically related. Average clinical algorithm adherence rate has been 92%. An average of 9% of calls was escalated by CAS nurses to the physician on call. An average of 5% of patients was triaged to the Emergency Department by CAS. Key learnings indicate that a seamless connectivity vision, cascading, multidisciplinary ownership of the problem, and synergistic enterprise improvements have contributed to this success while striving for continuous improvement.

Keywords: after hours phone calls, clinical advice services, nurse triage, Stanford Health Care

Procedia PDF Downloads 178
1652 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk

Authors: Masbubul Ishtiaque Ahmed

Abstract:

Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.

Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity

Procedia PDF Downloads 288
1651 Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment

Authors: S. Cafiso, B. Capace, A. Di Graziano, C. D’Agostino

Abstract:

Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed.

Keywords: bearing capacity, GPR, LWD, no destructive test, railway track

Procedia PDF Downloads 133
1650 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan

Authors: Yichin Chen

Abstract:

Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.

Keywords: aerial photogrammetry, landslide, landform change, Taiwan

Procedia PDF Downloads 159