Search results for: ring deep beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3449

Search results for: ring deep beam

2429 Solution for Rider Ring Wear Problem in Boil off Gas Reciprocating Compressor: A Case Study

Authors: Hessam Mortezaei, Saeid Joudakian

Abstract:

In this paper, the wear problem on rider rings of boil off gas compressor has been studied. This kind of oil free double acting compressor has free floating piston (FFP) technology and as a result of that it should have the lowest possible wear on its rider rings. But a design problem had caused a complete wear of rider rings after one month of continuous operation. In this case study, the source of this problem was recognized and solved.

Keywords: piston rider, rings, gas distribution, pressure wear

Procedia PDF Downloads 366
2428 Colorectal Resection in Endometriosis: A Study on Conservative Vascular Approach

Authors: A. Zecchin, E. Vallicella, I. Alberi, A. Dalle Carbonare, A. Festi, F. Galeone, S. Garzon, R. Raffaelli, P. Pomini, M. Franchi

Abstract:

Introduction: Severe endometriosis is a multiorgan disease, that involves bowel in 31% of cases. Disabling symptoms and deep infiltration can lead to bowel obstruction: surgical bowel treatment may be needed. In these cases, colorectal segment resection is usually performed by inferior mesenteric artery ligature, as radically as for oncological surgery. This study was made on surgery based on intestinal vascular axis’ preservation. It was assessed postoperative complications risks (mainly rate of dehiscence of intestinal anastomoses), and results were compared with the ones found in literature about classical colorectal resection. Materials and methods: This was a retrospective study based on 62 patients with deep infiltrating endometriosis of the bowel, which undergo segmental resection with intestinal vascular axis preservation, between 2013 and 2016. It was assessed complications related to the intervention both during hospitalization and 30-60 days after resection. Particular attention was paid to the presence of anastomotic dehiscence. 52 patients were finally telephonically interviewed in order to investigate the presence or absence of intestinal constipation. Results and Conclusion: Segmental intestinal resection performed in this study ensured a more conservative vascular approach, with lower rate of anastomotic dehiscence (1.6%) compared to classical literature data (10.0% to 11.4% ). No complications were observed regarding spontaneous recovery of intestinal motility and bladder emptying. Constipation in some patients, even after years of intervention, is not assessable in the absence of a preoperative constipation state assessment.

Keywords: anastomotic dehiscence, deep infiltrating endometriosis, colorectal resection, vascular axis preservation

Procedia PDF Downloads 204
2427 Combined Treatment of PARP-1 Inhibitor and Carbon Ion or Gamma Exposure Reduces the Metastatic Potential in Cultured Human Cells

Authors: Priyanka Chowdhury, Asitikantha Sarma, Utpal Ghosh

Abstract:

Hadron therapy using high Linear Energy Transfer (LET) ion beam is producing promising clinical results worldwide. The major advantages are its ability to kill radio-resistant tumor and its anti-metastatic activity. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been widely used as radiosensitizer, but its role in metastasis is unknown. The purpose of our study was to investigate the effect of PARP-1 depletion in combination with either Carbon Ion Beam (CIB) or gamma irradiation on metastatic potential of cultured cancerous cells. A549 cells were irradiated with CIB (0-4Gy) or gamma (0, 2, 4, 6 and 10 Gy) with and without PARP-1 inhibition. The metastatic potential of the cells was determined by cell migratory assay, expression, and activity of MMP-2 and MMP-9, expression of Cadherin, Fibronectin, and Vimentin. CIB exposure reduced migratory property and activity of MMP-2 and MMP-9 significantly. CIB with PARP-1 inhibition reduced cell migration and Matrix Metalloproteinase (MMPs) activity in a synergistic manner. Expression of MMPs was also down-regulated in CIB and combined treatment. On the contrary, MMP- 2 and MMP-9 activity was significantly increased in gamma irradiated cells but decreased upon combined treatment of gamma and PARP-1 inhibitor. MMPs expression and migration was reduced when gamma irradiation was combined with PARP-1 inhibition. Thus, our study clearly demonstrates that PARP-1 inhibition in combination with either high or low LET can significantly suppress metastatic potential in cancer cells and thereby can be a promising tool in controlling metastatic cancers.

Keywords: high LET, low LET, matrix metalloproteinase (MMP), PARP-1

Procedia PDF Downloads 214
2426 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 143
2425 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Maria Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 47
2424 Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction

Authors: Seyedeh Bahar Hashemi, Alireza Rahimi, Mehdi Arjmand

Abstract:

Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae.

Keywords: natural deep eutectic solvents, ultrasound-assisted extraction, algae, antioxidant activity, phenolic compounds, carotenoids

Procedia PDF Downloads 179
2423 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 32
2422 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 168
2421 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise

Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov

Abstract:

Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectionally coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectionally.

Keywords: chaotic oscillators, phase synchronization, noise, intermittency of intermittencies

Procedia PDF Downloads 642
2420 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 217
2419 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 316
2418 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 74
2417 Study of Climate Change Process on Hyrcanian Forests Using Dendroclimatology Indicators (Case Study of Guilan Province)

Authors: Farzad Shirzad, Bohlol Alijani, Mehry Akbary, Mohammad Saligheh

Abstract:

Climate change and global warming are very important issues today. The process of climate change, especially changes in temperature and precipitation, is the most important issue in the environmental sciences. Climate change means changing the averages in the long run. Iran is located in arid and semi-arid regions due to its proximity to the equator and its location in the subtropical high pressure zone. In this respect, the Hyrcanian forest is a green necklace between the Caspian Sea and the south of the Alborz mountain range. In the forty-third session of UNESCO, it was registered as the second natural heritage of Iran. Beech is one of the most important tree species and the most industrial species of Hyrcanian forests. In this research, using dendroclimatology, the width of the tree ring, and climatic data of temperature and precipitation from Shanderman meteorological station located in the study area, And non-parametric Mann-Kendall statistical method to investigate the trend of climate change over a time series of 202 years of growth ringsAnd Pearson statistical method was used to correlate the growth of "ring" growth rings of beech trees with climatic variables in the region. The results obtained from the time series of beech growth rings showed that the changes in beech growth rings had a downward and negative trend and were significant at the level of 5% and climate change occurred. The average minimum, medium, and maximum temperatures and evaporation in the growing season had an increasing trend, and the annual precipitation had a decreasing trend. Using Pearson method during fitting the correlation of diameter of growth rings with temperature, for the average in July, August, and September, the correlation is negative, and the average temperature in July, August, and September is negative, and for the average The average maximum temperature in February was correlation-positive and at the level of 95% was significant, and with precipitation, in June the correlation was at the level of 95% positive and significant.

Keywords: climate change, dendroclimatology, hyrcanian forest, beech

Procedia PDF Downloads 104
2416 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 32
2415 Fluid–Structure Interaction Modeling of Wind Turbines

Authors: Andre F. A. Cyrino

Abstract:

Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.

Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade

Procedia PDF Downloads 268
2414 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations

Authors: Gianni Jacucci

Abstract:

Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.

Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability

Procedia PDF Downloads 38
2413 Disaster Probability Analysis of Banghabandhu Multipurpose Bridge for Train Accidents and Its Socio-Economic Impact on Bangladesh

Authors: Shahab Uddin, Kazi M. Uddin, Hamamah Sadiqa

Abstract:

The paper deals with the Banghabandhu Multipurpose Bridge (BMB), the 11th longest bridge in the world was constructed in 1998 aimed at contributing to promote economic development in Bangladesh. In recent years, however, the high incidence of traffic accidents and injuries at the bridge sites looms as a great safety concern. Investigation into the derailment of nine bogies out of thirteen of Dinajpur-bound intercity train ‘Drutajan Express ’were derailed and inclined on the Banghabandhu Multipurpose Bridge on 28 April 2014. The train accident in Bridge will be deep concern for both structural safety of bridge and people than other vehicles accident. In this study we analyzed the disaster probability of the Banghabandhu Multipurpose Bridge for accidents by checking the fitness of Bridge structure. We found that train accident impact is more risky than other vehicles accidents. We also found that socio-economic impact on Bangladesh will be deep concerned.

Keywords: train accident, derailment, disaster, socio-economic

Procedia PDF Downloads 302
2412 Haematology and Serum Biochemical Profile of Laying Chickens Reared on Deep Litter System with or without Access to Grass or Legume Pasture under Humid Tropical Climate

Authors: E. Oke, A. O. Ladokun, J. O. Daramola, O. M. Onagbesan

Abstract:

There has been a growing interest on the effects of access to pasture on poultry health status. However, there is a paucity of data on the relative benefits of grass and legume pastures. An experiment was conducted to determine the effects of rearing systems {deep litter system (DL), deep litter with access to legumes (LP) or grass (GP) pastures} haematology and serum chemistry of ISA Brown layers. The study involved the use of two hundred and forty 12 weeks old pullets. The birds were reared until 60 weeks of age. Eighty birds were assigned to each treatment; each treatment had four replicates of 20 birds each. Blood samples (2.5 ml) were collected from the wing vein of two birds per replicate and serum chemistry and haematological parameters were determined. The results showed that there were no significant differences between treatments in all the parameters considered at 18 weeks of age. At 24 weeks old, the percentage of heterophyl (HET) in DL and LP were similar but higher than that of GP. The ratio of H:L was higher (P<0.05) in DL than those of LP and GP while LP and GP were comparable. At week 38 of age, the percentage of PCV in the birds in LP and GP were similar but the birds in DL had significantly lower level than that of GP. In the early production phase, serum total protein of the birds in LP was similar to that of GP but higher (P<0.05) than that of DL. At the peak production phase (week 38), the total protein in GP and DL were similar but significantly lower than that of LP. The albumin level in LP was greater (P<0.05) than GP but similar to that of DL. In the late production phase, the total protein in LP was significantly higher than that of DL but similar to that of GP. It was concluded that rearing chickens in either grass or legume pasture did not have deleterious effects on the health of laying chickens but improved some parameters including blood protein and HET/lymphocyte.

Keywords: rearing systems, stylosanthes, cynodon serum chemistry, haematology, hen

Procedia PDF Downloads 327
2411 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy

Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena

Abstract:

Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.

Keywords: online range monitoring, particle therapy, quality assurance, tracking detector

Procedia PDF Downloads 240
2410 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 348
2409 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 142
2408 Overview Studies of High Strength Self-Consolidating Concrete

Authors: Raya Harkouss, Bilal Hamad

Abstract:

Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology. At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete. A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure. The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Keywords: self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams

Procedia PDF Downloads 255
2407 Geopolitics over Ukraine: International Policies and Domestic Problems

Authors: Daniel Silander

Abstract:

This article explores the EU Initiated European Neighborhood Policy (ENP) towards Ukraine. It also explores Russian geopolitics in the region. We argue that Ukraine is sandwiched between two regional powers in the EU and Russia. By analyzing EU democracy promotion towards Ukraine and neighbors, we assess a weak EU normative capacity. Instead of building a “ring of friends”, as argued by the EU Commission, in an enlarged democratic community, the EU has achieved poor democratic records in Ukraine which opened for a revival of Russia in the region and causes the international crisis over Crime of 2014.

Keywords: regional neighborhood policy, European Union, Russia, Ukraine, domestic elites

Procedia PDF Downloads 524
2406 Parametric Study for Optimal Design of Hybrid Bridge Joint

Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho

Abstract:

Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.

Keywords: parametric study, optimal design, hybrid bridge, finite element analysis

Procedia PDF Downloads 425
2405 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 150
2404 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 38
2403 Complicated Corneal Ulceration in Cats: Clinical Diagnosis and Surgical Management of 80 Cases

Authors: Khaled M. Ali, Ayman A. Mostafa, Soliman M. Soliman

Abstract:

Objectives: To describe the most common clinical and endoscopic findings associated with complicated corneal ulcers in cats, and to determine the short-term outcomes after surgical treatment of these cats. Animals Eighteen client-owned cats of different breeds (52 females and 28 males), ranging in age from 3 months to 6 years, with corneal ulcers. Procedures: Cats were clinically evaluated to initially determine the concurrent corneal abnormalities. Endoscopic examination was performed to determine the anterior and posterior segments abnormalities. Superficial and deep stromal ulcers were treated using conjunctival flap. Corneal sequestrum was treated by partial keratectomy and conjunctival flap. Anterior synechia was treated via peripheral iridectomy and separation of the adhesion between the iris and the inner cornea. Symblepharon was treated by removal of the adhered conjunctival membrane from the cornea. Incurable endophthalmitis was treated surgically by extirpation. Short-term outcomes after surgical managements of selected corneal abnormalities were then assessed clinically and endoscopically. Results: Deep stromal ulcer with descemetocele, endophthalmitis, symblepharon, corneal sequestration and anterior synechia with secondary glaucoma and corneal scarring were the most common complications of corneal ulcer. FHV-1 was a common etiologic factor of corneal ulceration. Persistent corneal scars of varying shape and size developed in cats with deep stromal ulcer, anterior synechia, and corneal sequestration. Conclusions: Domestic shorthaired and Persian cats were the most predisposed breeds to FHV-1 infection and subsequent corneal ulceration. Immediate management of patients with corneal ulcer would prevent serious complications. No age or sex predisposition to complicated corneal ulceration in cats.

Keywords: cats, complicated corneal ulceration, clinical, endoscopic diagnosis, FHV-1

Procedia PDF Downloads 283
2402 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs

Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers

Abstract:

High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.

Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling

Procedia PDF Downloads 158
2401 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
2400 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 165