Search results for: particle tracking diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3526

Search results for: particle tracking diffusion

2506 Luffa cylindrica as Alternative for Treatment of Waste in the Classroom

Authors: Obradith Caicedo, Paola Devia

Abstract:

Methylene blue (MB) and malachite green (MG) are substances commonly used in classrooms for academic purposes. Nevertheless, in most cases, there is no adequate disposal of this type of waste, their presence in the environment affects ecosystems due to the presence of color and the reduction of photosynthetic processes. In this work, we evaluated properties of fibers of Luffa cylindrica in removal from dyes of aqueous solutions through an adsorption process. The point of zero charge, acid and basic sites was also investigated. The best conditions of the adsorption process were determined under a discontinuous system, evaluating an interval of the variables 2 3 : pH value, particle size of the adsorbent and contact time. The temperature (18ºC), agitation (220 rpm) and adsorbent dosage (10g/L) were constant. Measurements were made using UV- Visible spectrophotometry. The point of zero charge for Luffa cylindrica was 4,3. The number of acidic and basic sites was 2.441 meq/g and 1,009 meq/g respectively. These indicate a prevalence of acid groups. The maximum dye sorption was found to be at a pH of 5,5 (97,1 % for MB) and 5,0 (97,7% for MG) and particle size of the adsorbent 850 µm. The equilibrium uptake was attained within 60 min. With this study, it has been shown that Luffa cylindrica can be used as efficient adsorbent for the removal of methylene blue, and malachite green from aqueous solution in classrooms.

Keywords: adsorption, dye removal, low-cost adsorbents, Luffa cylindrical

Procedia PDF Downloads 179
2505 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 561
2504 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach

Authors: Razaq A. Olaitan, Ayansina Ayanlade

Abstract:

Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.

Keywords: aerosol loading, aerosol types, health risks, optical properties

Procedia PDF Downloads 38
2503 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment

Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska

Abstract:

Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.

Keywords: accident assessment model, eye tracking, occupational safety, scaffolding

Procedia PDF Downloads 181
2502 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method

Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy

Abstract:

With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.

Keywords: heat transfer, pde, taguchi optimization, SI/Ge

Procedia PDF Downloads 320
2501 DEM Simulation of the Formation of Seed Granules in Twin-Screw Granulation Process

Authors: Tony Bediako Arthur, Nejat Rahmanian, Nana Gyan Sekyi

Abstract:

The possibility of producing seeded granules from fine and course powders is a major challenge as the control parameters that affect its producibility is still under investigation. The seeded granulation is a novel form of producing granules where the granule is made up of larger particles at the core, which are surrounded by fine particles. The possibility of managing granulation through course particle feed rate control makes seeded granulation in continuous granulation useful in terms of process control. Twin screw granulation is now a major process of choice for the wet continuous granulation process in the industry. It is, therefore, imperative to investigate the process control parameters that influence the formation of seeded granules in twin screw granulation. In this paper, the effect of the twin screws rotating speed on the production of seeded granules has been examined. Pictorial and quantitative analysis indicates a high number of seeded granules forming at low screw rotating speeds. It is also instructive to say that higher tensile stress occurs at the kneading section of the screws; thus, higher rotating speed courses the fines for breaking off from the seed particle.

Keywords: DEM, twin-screw, Seeded granules, Simulation

Procedia PDF Downloads 67
2500 Effect of Temperature on Pervaporation Performance of Ag-Poly Vinyl Alcohol Nanocomposite Membranes

Authors: Asmaa Selim, Peter Mizsey

Abstract:

Bio-ethanol is considered of higher potential as a green renewable energy source owing to its environmental benefits and its high efficiency. In the present study, silver nanoparticles were in-situ generated in a poly (vinyl alcohol) in order to improve its potentials for pervaporation of ethanol-water mixture using solution-casting. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 percentage mass water at 40ᵒC was reported. Pervaporation data for nanocomposite membranes showed around 100% increase in the water permeance values while the intrinsic selectivity decreased. The water permeances of origin crosslinked PVA membrane, and the 2.5% silver loaded PVA membrane are 26.65 and 70.45 (g/m².kPa.h) respectively. The values of total flux and water flux are closed to each other, indicating that membranes could be effectively used to break the azeotropic point of ethanol-water. Effect of temperature on the pervaporation performance, permeation parameter and diffusion coefficient of both water and ethanol was discussed. The negative heat of sorption ∆Hs values calculated on the basis of the estimated Arrhenius activation energy values indicating that the sorption process was controlled by Langmuir’s mode. The overall results showed that the membrane containing 0.5 mass percentage of Ag salt exhibited excellent PV performance.

Keywords: bio-ethanol, diffusion coefficient, nanocomposite, pervaporation, poly (vinyl alcohol), silver nanoparticles

Procedia PDF Downloads 153
2499 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.

Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization

Procedia PDF Downloads 116
2498 Coupling Static Multiple Light Scattering Technique With the Hansen Approach to Optimize Dispersibility and Stability of Particle Dispersions

Authors: Guillaume Lemahieu, Matthias Sentis, Giovanni Brambilla, Gérard Meunier

Abstract:

Static Multiple Light Scattering (SMLS) has been shown to be a straightforward technique for the characterization of colloidal dispersions without dilution, as multiply scattered light in backscattered and transmitted mode is directly related to the concentration and size of scatterers present in the sample. In this view, the use of SMLS for stability measurement of various dispersion types has already been widely described in the literature. Indeed, starting from a homogeneous dispersion, the variation of backscattered or transmitted light can be attributed to destabilization phenomena, such as migration (sedimentation, creaming) or particle size variation (flocculation, aggregation). In a view to investigating more on the dispersibility of colloidal suspensions, an experimental set-up for “at the line” SMLS experiment has been developed to understand the impact of the formulation parameters on particle size and dispersibility. The SMLS experiment is performed with a high acquisition rate (up to 10 measurements per second), without dilution, and under direct agitation. Using such experimental device, SMLS detection can be combined with the Hansen approach to optimize the dispersing and stabilizing properties of TiO₂ particles. It appears that the dispersibility and the stability spheres generated are clearly separated, arguing that lower stability is not necessarily a consequence of poor dispersibility. Beyond this clarification, this combined SMLS-Hansen approach is a major step toward the optimization of dispersibility and stability of colloidal formulations by finding solvents having the best compromise between dispersing and stabilizing properties. Such study can be intended to find better dispersion media, greener and cheaper solvents to optimize particles suspensions, reduce the content of costly stabilizing additives or satisfy product regulatory requirements evolution in various industrial fields using suspensions (paints & inks, coatings, cosmetics, energy).

Keywords: dispersibility, stability, Hansen parameters, particles, solvents

Procedia PDF Downloads 83
2497 The Processing of Implicit Stereotypes in Contexts of Reading, Using Eye-Tracking and Self-Paced Reading Tasks

Authors: Magali Mari, Misha Muller

Abstract:

The present study’s objectives were to determine how diverse implicit stereotypes affect the processing of written information and linguistic inferential processes, such as presupposition accommodation. When reading a text, one constructs a representation of the described situation, which is then updated, according to new outputs and based on stereotypes inscribed within society. If the new output contradicts stereotypical expectations, the representation must be corrected, resulting in longer reading times. A similar process occurs in cases of linguistic inferential processes like presupposition accommodation. Presupposition accommodation is traditionally regarded as fast, automatic processing of background information (e.g., ‘Mary stopped eating meat’ is quickly processed as Mary used to eat meat). However, very few accounts have investigated if this process is likely to be influenced by domains of social cognition, such as implicit stereotypes. To study the effects of implicit stereotypes on presupposition accommodation, adults were recorded while they read sentences in French, combining two methods, an eye-tracking task and a classic self-paced reading task (where participants read sentence segments at their own pace by pressing a computer key). In one condition, presuppositions were activated with the French definite articles ‘le/la/les,’ whereas in the other condition, the French indefinite articles ‘un/une/des’ was used, triggering no presupposition. Using a definite article presupposes that the object has already been uttered and is thus part of background information, whereas using an indefinite article is understood as the introduction of new information. Two types of stereotypes were under examination in order to enlarge the scope of stereotypes traditionally analyzed. Study 1 investigated gender stereotypes linked to professional occupations to replicate previous findings. Study 2 focused on nationality-related stereotypes (e.g. ‘the French are seducers’ versus ‘the Japanese are seducers’) to determine if the effects of implicit stereotypes on reading are generalizable to other types of implicit stereotypes. The results show that reading is influenced by the two types of implicit stereotypes; in the two studies, the reading pace slowed down when a counter-stereotype was presented. However, presupposition accommodation did not affect participants’ processing of information. Altogether these results show that (a) implicit stereotypes affect the processing of written information, regardless of the type of stereotypes presented, and (b) that implicit stereotypes prevail over the superficial linguistic treatment of presuppositions, which suggests faster processing for treating social information compared to linguistic information.

Keywords: eye-tracking, implicit stereotypes, reading, social cognition

Procedia PDF Downloads 181
2496 Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate

Authors: Nour Eldin Afyouni, Hassan Assoum, Kamel Abed-Meraim, Anas Sakout

Abstract:

The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise.

Keywords: impinging jet, coherent structures, SPIV, aeroacoustics

Procedia PDF Downloads 68
2495 A Study of the Effects of Nurse Innovation on Service Quality and Service Experience

Authors: Rhay-Hung Weng, Ching-Yuan Huang, Wan-Ping Chen

Abstract:

Recently, many hospitals have put much emphasis upon the development of nurse innovation. The present study aimed to clarify how nurse innovation is related to medical service quality and medical service experience. This study adopted questionnaire-survey method with nurses and customers of the inpatient wards from three Taiwanese hospitals as the research subjects. After pairing, there were 294 valid questionnaires. Hierarchical regression analysis was utilized to test the possible impact of nurse innovation on medical service quality and experience. In terms of the dimensions of nurse innovation, “innovation behavior” ranked the highest (3.24), followed by knowledge creation and innovation diffusion; in terms of the degree of the medical service quality, 'reliability' ranked the highest (4.35). As for the degree of the medical service experience, 'feel experience' ranked the highest (4.44). All dimensions of nurse innovation have no significant effects on medical service quality and medical service experience. Of these three dimensions of nurse innovation, the level of innovation behavior was perceived by the nurses as the highest. The study found that nurse innovation has no significant effects on medical service quality and medical service experience. Managers shall provide sufficient resources and budget for fostering innovation development and encourage their nurses to develop nursing innovation for patents. The education and training courses on “patient-centered ” shall be enhanced among hospital nurses. Health care managers shall also explore the difficulties about innovation diffusion and find the solutions for nurses.

Keywords: innovation, employee innovative behavior, service quality, service experience

Procedia PDF Downloads 316
2494 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 419
2493 Slovenia Rider/Driver Gaze Behavior Comparative Analysis

Authors: Tomaž Tollazzi, Matjaž Šraml, Chiara Gruden, Marko Renčelj

Abstract:

Motorcycle riders are an increasing group of road users. The intrinsic characteristics of powered two-wheelers (PTW) allow them to be particularly flexible, both in urban and extra-urban environments. Nevertheless, crash statistics indicate that riders involved in road accidents are highly likely to suffer severe injuries, underlining the vulnerability of this group of road users. An element that can greatly affect the safety of PTW users is road design, as roads are usually designed for two-track vehicles (cars, buses, and lorries) and usually do not consider the needs of PTWs. Additionally, handling a motorcycle is quite different from driving a car; thus, the behavior of riders is different from that of drivers. The aim of this research was to compare how different road designs are perceived by riders and drivers and to preliminarily assess if riders’ behavior and attention allocation are related. For this research, an eye-tracking experiment was developed outdoors. Both drivers and riders travelled along a route comprising four different road designs and various road layouts, and the output was analyzed both qualitatively and quantitatively. Although it was not possible to carry out a statistical analysis due to the limited number of participants, the results demonstrate that there is a difference in the gaze behavior of drivers and riders, with the latter being far more focused on the left-hand side of the road and concentrating on defined elements of road design. Furthermore, the experiment demonstrated that a higher number of fixations is related to lower speeds. Finally, it was noted that both kinds of road users focus well on the carriageway, leading to the conclusion that the indications given through road markings may be much more effective than vertical signalization, which has rarely been observed.

Keywords: road safety, powered two-wheelers, eye-tracking, gaze behavior

Procedia PDF Downloads 63
2492 Comparison between Two Groups of Pathogenic Bacteria under Different Essential Oil Extract of Ocimum basilicum L.

Authors: A. M. Daneshian Moghaddam, J. Shayegh, J. Dolghari Sharaf

Abstract:

This study was conducted to assessment the antibacterial activities of different part of basil essential oil on the standard gram-negative bacteria include Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and gram-positive ones including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogen. The basil essential oil was provided from two part of plant (leaf and herb) at the two different developmental stage. The antibacterial properties of basil essential oil was studied Also agar disk diffusion, minimal inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were detected. The results of agar disk diffusion tests showed the inhibition zones as follow: Listeria monocytogen 17.11-17.42 mm, St. aureus 29.20-30.56 mm, B. cereus 14.73-16.06 mm, E. coli 21.60-23.58 mm, Salmonella typhi 21.63-24.80 mm and for P. aeruginosa the maximum inhibition zones were seen on leaf essential oil. From the herb part of basil almost similar results were obtained: Listeria monocytogen 17.02-17.67 mm, St. aureus 29.60-30.41 mm, B. cereus 10.66-16.11 mm, E. coli 17.48-23.54 mm, Salmonella typhi 21.58-21.64 mm and for P. aeruginosa the maximum inhibition zones were seen. The MICs for gram-positive bacteria were as: B. cereus ranging 36-18 μg/mL, S. aureus 18 μg/mL, Listeria monocytogen 18-36 μg/mL and for gram-negative bacteria of E. coli, Salmonella typhi and P. aeruginosa were 18-9 μg/mL.

Keywords: basil (Ocimum basilicum) essential oil, gram-positive and gram negative bacteria, antibacterial activity, MIC, MBC

Procedia PDF Downloads 429
2491 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 103
2490 Total Longitudinal Displacement (tLoD) of the Common Carotid Artery (CCA) Does Not Differ between Patients with Moderate or High Cardiovascular Risk (CV) and Patients after Acute Myocardial Infarction (AMI)

Authors: P. Serpytis, K. Azukaitis, U. Gargalskaite, R. Navickas, J. Badariene, V. Dzenkeviciute

Abstract:

Purpose: Total longitudinal displacement (tLoD) of the common carotid artery (CCA) wall is a novel ultrasound marker of vascular function that can be evaluated using modified speckle tracking techniques. Decreased CCA tLoD has already been shown to be associated with diabetes and was shown to predict one year cardiovascular outcome in patients with suspected coronary artery disease (CAD) . The aim of our study was to evaluate if CCA tLoD differ between patients with moderate or high cardiovascular (CV) risk and patients after recent acute myocardial infarction (AMI). Methods: 49 patients (54±6 years) with moderate or high CV risk and 42 patients (58±7 years) after recent AMI were included. All patients were non-diabetic. CCA tLoD was evaluated using GE EchoPAC speckle tracking software and expressed as mean of both sides. Data on systolic blood pressure, total and high density lipoprotein (HDL) cholesterol levels, high sensitivity C-reactive protein (hsCRP) level, smoking status and family history of early CV events was evaluated and assessed for association with CCA tLoD. Results: tLoD of CCA did not differ between patients with moderate or high CV risk and patients with very high CV risk after MI (0.265±0.128 mm vs. 0.237±0.103 mm, p>0.05). Lower tLoD was associated with lower HDL cholesterol levels (r=0.211, p=0.04) and male sex (0.228±0.1 vs. 0.297±0.134, p=0.01). Conclusions: tLoD of CCA did not differ between patients with moderate or high CV risk and patients with very high CV risk after AMI. However, lower CCA tLoD was significantly associated with low HDL cholesterol levels and male sex.

Keywords: total longitudinal displacement, carotid artery, cardiovascular risk, acute myocardial infarction

Procedia PDF Downloads 372
2489 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles

Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban

Abstract:

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272

Procedia PDF Downloads 314
2488 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 84
2487 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm

Procedia PDF Downloads 422
2486 Solid Lipid Nanoparticles of Levamisole Hydrochloride

Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud

Abstract:

Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.

Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences

Procedia PDF Downloads 420
2485 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 430
2484 Segmental Dynamics of Poly(Alkyl Methacrylate) Chain in Ultra-Thin Spin-Cast Films

Authors: Hiroyuki Aoki

Abstract:

Polymeric materials are often used in a form of thin film such as food wrap and surface coating. In such the applications, polymer films thinner than 100 nm have been often used. The thickness of such the ultra-thin film is less than the unperturbed size of a polymer chain; therefore, the polymer chain in an ultra-thin film is strongly constrained. However, the details on the constrained dynamics of polymer molecules in ultra-thin films are still unclear. In the current study, the segmental dynamics of single polymer chain was directly investigated by fluorescence microscopy. The individual chains of poly(alkyl methacrylate) labeled by a perylenediimide dye molecule were observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was directly analyzed. The segmental motion in a thin film with a thickness of 10 nm was found to be suppressed compared to that in a bulk state. The detailed analysis of the molecular motion revealed that the diffusion rate of the in-plane rotation was similar to the thin film and the bulk; on the other hand, the out-of-plane motion was restricted in a thin film. This result indicates that the spatial restriction in an ultra-thin film thinner than the unperturbed chain dimension alters the dynamics of individual molecules in a polymer system.

Keywords: polymer materials, single molecule, molecular motion, fluorescence microscopy, super-resolution techniques

Procedia PDF Downloads 304
2483 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 195
2482 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 180
2481 Soret and Dufour's Effects on Mixed Convection Unsteady MHD Boundary Layer Flow over a Stretching Sheet Embedded in a Porous Medium with Chemically Reactive Spices

Authors: Deva Kanta Phukan

Abstract:

An investigation is made to carry out to study the thermal-diffusion and diffusion thermo-effects in hydro-magnetic unsteady flow by a mixed convection boundary layer past an impermeable vertical stretching sheet embedded in a conducting fluid-saturated porous medium in the presence of a chemical reaction effect. The velocity of stretching surface, the surface temperature and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed in to self similar unsteady equations using similarity transformations and solved numerically by the Runge kutta fourth order scheme in association with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, temperature, the concentration, the skin friction , and the Nusselt and Sherwood numbers are shown graphically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.

Keywords: heat and mass transfer, boundary layer flow, porous media, magnetic field, Soret number, Dufour’s number

Procedia PDF Downloads 429
2480 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment

Authors: G. Kabir, A. M. Mohammed, M. A. Bawa

Abstract:

The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.

Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss

Procedia PDF Downloads 285
2479 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization

Procedia PDF Downloads 342
2478 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation

Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst

Abstract:

There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.

Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation

Procedia PDF Downloads 172
2477 Scale Effects on the Wake Airflow of a Heavy Truck

Authors: Aude Pérard Lecomte, Georges Fokoua, Amine Mehel, Anne Tanière

Abstract:

Air quality in urban areas is deteriorated by pollution, mainly due to the constant increase of the traffic of different types of ground vehicles. In particular, particulate matter pollution with important concentrations in urban areas can cause serious health issues. Characterizing and understanding particle dynamics is therefore essential to establish recommendations to improve air quality in urban areas. To analyze the effects of turbulence on particulate pollutants dispersion, the first step is to focus on the single-phase flow structure and turbulence characteristics in the wake of a heavy truck model. To achieve this, Computational Fluid Dynamics (CFD) simulations were conducted with the aim of modeling the wake airflow of a full- and reduced-scale heavy truck. The Reynolds Average Navier-Stokes (RANS) approach with the Reynolds Stress Model (RSM)as the turbulence model closure was used. The simulations highlight the apparition of a large vortex coming from the under trailer. This vortex belongs to the recirculation region, located in the near-wake of the heavy truck. These vortical structures are expected to have a strong influence on particle dynamics that are emitted by the truck.

Keywords: CDF, heavy truck, recirculation region, reduced scale

Procedia PDF Downloads 201