Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4927

Search results for: neural progentor cells

3907 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 406
3906 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418
3905 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation

Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath

Abstract:

Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.

Keywords: autophagy, mitochondrial turnover, ROS, glycolysis

Procedia PDF Downloads 164
3904 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 128
3903 A Replicon-Baculovirus Model for Efficient Packaging of Hepatitis E Virus RNA and Production of Infectious Virions

Authors: Mohammad K. Parvez, Mohammed S. Al-Dosari

Abstract:

Hepatitis E virus (HEV) is an emerging RNA virus that causes acute and chronic liver disease with a global mortality rate of about 2%. Despite milestone developments in understanding of HEV biology, there is still lack of a robust culture system or animal model. Therefore, in a novel approach, two recombinant-baculoviruses (vBac-ORF2 and vBac-ORF3) that could overexpress HEV ORF2 (structural/capsid) and ORF3 (nonstructural/regulatory) proteins, respectively were constructed. The established HEV-SAR55 (genotype 1) replicon that contained GFP gene, in place of ORF2/ORF3 sequences was in vitro transcribed, and GFP production in RNA transfected S10-3 cells was scored by FACS. Enhanced infectivity, if any, of nascent virions produced by exogenously-supplied ORF2 and viral RNA by co-expression of ORF3 was tested on naïve HepG2 cells. Co-transduction with vBac-ORF2/vBac-ORF3 (108 pfu/microL) produced high amounts of native ORF2/ORF3 in approximately 60% of S10-3 cells, determined by immunofluorescence microscopy and Western analysis. FACS analysis showed about 9% GFP positivity of S10-3 cells on day6 post-transfection (i.e, day5 post-transduction). Further, FACS scoring indicated that lysates from S10-3 cultures receiving the RNA plus vBac-ORF2 were capable of producing HEV particles with about 4% infectivity in HepG2 cells. However, lysates of cultures co-transduced with vBac-ORF3, were found to further enhance virion infectivity by approximately 17%. This supported a previously proposed role of ORF3 as a minor-structural protein in HEV virion assembly and infectivity. In conclusion, the present model for efficient genomic RNA packaging and production of infectious virions could be a valuable tool to study various aspects of HEV molecular biology, in vitro.

Keywords: chronic liver disease, hepatitis E virus, ORF2, ORF3, replicon

Procedia PDF Downloads 255
3902 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
3901 Pluripotent Stem Cells as Therapeutic Tools for Limbal Stem Cell Deficiencies and Drug Testing

Authors: Aberdam Edith, Sangari Linda, Petit Isabelle, Aberdam Daniel

Abstract:

Background and Rationale: Transparent avascularised cornea is essential for normal vision and depends on limbal stem cells (LSC) that reside between the cornea and the conjunctiva. Ocular burns or injuries may destroy the limbus, causing limbal stem cell deficiency (LSCD). The cornea becomes vascularised by invaded conjunctival cells, the stroma is scarring, resulting in corneal opacity and loss of vision. Grafted autologous limbus or cultivated autologous LCS can restore the vision, unless the two eyes are affected. Alternative cellular sources have been tested in the last decades, including oral mucosa or hair follicle epithelial cells. However, only partial success has been achieved by the use of these cells since they were not able to uniformly commit into corneal epithelial cells. Human pluripotent stem cells (iPSC) display both unlimited growth capacity and ability to differentiate into any cell type. Our goal was to design a standardized and reproducible protocol to produce transplantable autologous LSC from patients through cell reprogramming technology. Methodology: First, keratinocyte primary culture was established from a small number of plucked hair follicles of healthy donors. The resulting epithelial cells were reprogrammed into induced pluripotent stem cells (iPSCs) and further differentiate into corneal epithelial cells (CEC), according to a robust protocol that recapitulates the main step of corneal embryonic development. qRT-PCR analysis and immunofluorescent staining during the course of differentiation confirm the expression of stage specific markers of corneal embryonic lineage. First appear ectodermal progenitor-specific cytokeratins K8/K18, followed at day 7 by limbal-specific PAX6, TP63 and cytokeratins K5/K14. At day 15, K3/K12+-corneal cells are present. To amplify the iPSC-derived LSC (named COiPSC), intact small epithelial colonies were detached and cultivated in limbal cell-specific medium. In that culture conditions, the COiPSC can be frozen and thaw at any passage, while retaining their corneal characteristics for at least eight passages. To evaluate the potential of COiPSC as an alternative ocular toxicity model, COiPSC were treated at passage P0 to P4 with increasing amounts of SDS and Benzalkonium. Cell proliferation and apoptosis of treated cells was compared to LSC and the SV40-immortalized human corneal epithelial cell line (HCE) routinely used by cosmetological industrials. Of note, HCE are more resistant to toxicity than LSC. At P0, COiPSC were systematically more resistant to chemical toxicity than LSC and even to HCE. Remarkably, this behavior changed with passage since COiPSC at P2 became identical to LSC and thus closer to physiology than HCE. Comparative transcriptome analysis confirmed that COiPSC from P2 are similar to a mixture of LSC and CEC. Finally, by organotypic reconstitution assay, we demonstrated the ability of COiPSC to produce a 3D corneal epithelium on a stromal equivalent made of keratocytes. Conclusion: COiPSC could become valuable for two main applications: (1) an alternative robust tool to perform, in a reproducible and physiological manner, toxicity assays for cosmetic products and pharmacological tests of drugs. (2). COiPSC could become an alternative autologous source for cornea transplantation for LSCD.

Keywords: Limbal stem cell deficiency, iPSC, cornea, limbal stem cells

Procedia PDF Downloads 413
3900 Performance Improvement of The Nano-Composite Based Proton Exchange Membranes (PEMs)

Authors: Yusuf Yılmaz, Kevser Dincer, Derya Saygılı

Abstract:

In this study, performance of PEMs was experimentally investigated. Coating on the cathode side of the PEMs fuel cells was accomplished with the spray method by using NaCaNiBO. A solution having 0,1 gr NaCaNiBO +10 mL methanol was prepared. This solution was taken out and filled into a spray. Then the cathode side of PEMs fuel cells was cladded with NaCaNiBO by using spray method. After coating, the membrane was left out to dry for 24 hours. The PEM fuel cells were mounted to the system in single, double, triple and fourfold manner in order to spot the best performance. The performance parameter considered was the power to current ratio. The best performance was found to occur at the 300th second with the power/current ratio of 3.55 Watt/Ampere and on the fourfold parallel mounting after the coating; whereas the poorest performance took place at the 210th second, power to current ratio of 0.12 Watt/Ampere and on the twofold parallel connection after the coating.

Keywords: nano-composites, proton exchange membranes, performance improvement, fuel cell

Procedia PDF Downloads 370
3899 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells

Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin

Abstract:

Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².

Keywords: chromophore, organic solar cells, photoactive materials, small molecule

Procedia PDF Downloads 163
3898 The Modification of Convolutional Neural Network in Fin Whale Identification

Authors: Jiahao Cui

Abstract:

In the past centuries, due to climate change and intense whaling, the global whale population has dramatically declined. Among the various whale species, the fin whale experienced the most drastic drop in number due to its popularity in whaling. Under this background, identifying fin whale calls could be immensely beneficial to the preservation of the species. This paper uses feature extraction to process the input audio signal, then a network based on AlexNet and three networks based on the ResNet model was constructed to classify fin whale calls. A mixture of the DOSITS database and the Watkins database was used during training. The results demonstrate that a modified ResNet network has the best performance considering precision and network complexity.

Keywords: convolutional neural network, ResNet, AlexNet, fin whale preservation, feature extraction

Procedia PDF Downloads 123
3897 Study of Porous Metallic Support for Intermediate-Temperature Solid Oxide Fuel Cells

Authors: S. Belakry, D. Fasquelle, A. Rolle, E. Capoen, R. N. Vannier, J. C. Carru

Abstract:

Solid oxide fuel cells (SOFCs) are promising devices for energy conversion due to their high electrical efficiency and eco-friendly behavior. Their performance is not only influenced by the microstructural and electrical properties of the electrodes and electrolyte but also depends on the interactions at the interfaces. Nowadays, commercial SOFCs are electrically efficient at high operating temperatures, typically between 800 and 1000 °C, which restricts their real-life applications. The present work deals with the objectives to reduce the operating temperature and to develop cost-effective intermediate-temperature solid oxide fuel cells (IT-SOFCs). This work focuses on the development of metal-supported solid oxide fuel cells (MS-IT-SOFCs) that would provide cheaper SOFC cells with increased lifetime and reduced operating temperature. In the framework, the local company TIBTECH brings its skills for the manufacturing of porous metal supports. This part of the work focuses on the physical, chemical, and electrical characterizations of porous metallic supports (stainless steel 316 L and FeCrAl alloy) under different exposure conditions of temperature and atmosphere by studying oxidation, mechanical resistance, and electrical conductivity of the materials. Within the target operating temperature (i.e., 500 to 700 ° C), the stainless steel 316 L and FeCrAl alloy slightly oxidize in the air and H2, but don’t deform; whereas under Ar atmosphere, they oxidize more than with previously mentioned atmospheres. Above 700 °C under air and Ar, the two metallic supports undergo high oxidation. From 500 to 700 °C, the resistivity of FeCrAl increases by 55%. But nevertheless, the FeCrAl resistivity increases more slowly than the stainless steel 316L resistivity. This study allows us to verify the compatibility of electrodes and electrolyte materials with metallic support at the operating requirements of the IT-SOFC cell. The characterizations made in this context will also allow us to choose the most suitable fabrication process for all functional layers in order to limit the oxidation of the metallic supports.

Keywords: stainless steel 316L, FeCrAl alloy, solid oxide fuel cells, porous metallic support

Procedia PDF Downloads 93
3896 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 186
3895 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 218
3894 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
3893 Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level

Authors: Jefunnie Matahum, Yu-Chi Kuo, Chao-Ming Su, Tzong-Rong Ger

Abstract:

Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level.

Keywords: magnetic nanoparticles, single cell, magnetophoresis, image analysis

Procedia PDF Downloads 333
3892 The Effect of Naringenin on the Apoptosis in T47D Cell Line of Breast Cancer

Authors: AliAkbar Hafezi, Jahanbakhsh Asadi, Majid Shahbazi, Alijan Tabarraei, Nader Mansour Samaei, Hamed Sheibak, Roghaye Gharaei

Abstract:

Background: Breast cancer is the most common cancer in women. In most cancer cells, apoptosis is blocked. As for the importance of apoptosis in cancer cell death and the role of different genes in its induction or inhibition, the search for compounds that can begin the process of apoptosis in tumor cells is discussed as a new strategy in anticancer drug discovery. The aim of this study was to investigate the effect of Naringenin (NGEN) on the apoptosis in the T47D cell line of breast cancer. Materials and Methods: In this experimental study in vitro, the T47D cell line of breast cancer was selected as a sample. The cells at 24, 48, and 72 hours were treated with doses of 20, 200, and 1000 µm of Naringenin. Then, the transcription levels of the genes involved in apoptosis, including Bcl-2, Bax, Caspase 3, Caspase 8, Caspase 9, P53, PARP-1, and FAS, were assessed using Real Time-PCR. The collected data were analyzed using IBM SPSS Statistics 24.0. Results: The results showed that Naringenin at doses of 20, 200, and 1000 µm in all three times of 24, 48, and 72 hours increased the expression of Caspase 3, P53, PARP-1 and FAS and reduced the expression of Bcl-2 and increased the Bax/Bcl-2 ratio, nevertheless in none of the studied doses and times, had not a significant effect on the expression of Bax, Caspase 8 and Caspase 9. Conclusion: This study indicates that Naringenin can reduce the growth of some cancer cells and cause their deaths through increased apoptosis and decreased anti-apoptotic Bcl-2 gene expression and, resulting in the induction of apoptosis via both internal and external pathways.

Keywords: apoptosis, breast cancer, naringenin, T47D cell line

Procedia PDF Downloads 53
3891 Comparative Analysis of Single vs. Multiple gRNA on NGN3 Expression Using a Controllable dCas9-VP192 Activator (CRISPRa)

Authors: Nicholas Abdilmasih, Habib Rezanejad

Abstract:

This study investigates the gene expression induction efficiency of single versus multiple guide RNAs (gRNAs) targeting the NGN3 gene using the CRISPR activation system in HEK293 cells. Our study aimed to contribute to optimizing the use of gRNAs in gene therapy applications, particularly in treating diseases like diabetes, where precise gene regulation is essential. The experimental design involves culturing HEK293 cells, and once they reach approximately 70-80% confluence, cells were transfected with specific gRNAs targeting the NGN3 gene promoter. Specific gRNAs targeting the NGN3 promoter that was previously designed, incorporated into plasmid clone cassettes and introduced into HEK293 cells through co-transfection using pCAG-DDdCas9-VP192-EGFP transactivator. Post-transfection, cell viability, and fluorescence were monitored to assess transfection efficiency. RNA was extracted, converted to cDNA, and analyzed via qPCR to measure NGN3 expression levels. Results indicated that specific combinations of fewer gRNAs led to higher NGN3 activation compared to multiple gRNAs, challenging the assumption that more gRNAs result in synergistic gene activation. These findings suggest that optimized gRNA combinations can enhance gene therapy efficiency, potentially leading to more effective treatments for conditions like diabetes.

Keywords: CRISPR activation, Diabetes mellitus, gene therapy, guide RNA, Neurogenin3

Procedia PDF Downloads 23
3890 Immunolabeling of TGF-β during Muscle Regeneration

Authors: K. Nikovics, D. Riccobono, M. Oger, H. Morin, L. Barbier, T. Poyot, X. Holy, A. Bendahmane, M. Drouet, A. L. Favier

Abstract:

Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.

Keywords: adipose tissue derived stromal/stem cell, cytokine, macrophage, muscle regeneration

Procedia PDF Downloads 232
3889 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
3888 Inactivation of Listeria innocua ATCC 33092 by Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

High voltage electrical discharge plasmas are new nonthermal developing techniques used for water decontamination. To the full understanding of cell inactivation mechanisms, this study brings inactivation, recovery and cellular leakage of L. innocua cells before and after the treatment. Bacterial solution (200 mL) of L. innocua was treated in a glass reactor with a point-to-plate electrode configuration (high voltage electrode-titanium wire, was in the gas phase and grounded electrode was in the liquid phase). Argon was injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min, positive polarity and conductivity of media of 100 µS/cm were chosen to define listed parameters. With a longer treatment time inactivation was higher as well as the increase in cellular leakage. Despite total inactivation recovery of cells occurred probably because of a high leakage of proteins, compared to lower leakage of nucleic acids (DNA and RNA). In order to define mechanisms of inactivation further research is needed.

Keywords: Listeria innocua ATCC 33092, inactivation, gas phase plasma, cellular leakage, recovery of cells

Procedia PDF Downloads 176
3887 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 282
3886 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
3885 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs

Authors: Jamal Hussain Al-Smail

Abstract:

Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.

Keywords: fuel cells, material porosity design, mathematical modeling, porous media

Procedia PDF Downloads 153
3884 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
3883 Impact of Neuron with Two Dendrites in Heart Behavior

Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue

Abstract:

Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.

Keywords: neural networks, neuron, dendrites, heart behavior, ECG

Procedia PDF Downloads 85
3882 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension

Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo

Abstract:

Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.

Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)

Procedia PDF Downloads 173
3881 Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells

Authors: Hajar Hosseini Khorami

Abstract:

Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins.

Keywords: cationic porphyrins, gene delivery, non-viral vectors, transfection reagents

Procedia PDF Downloads 198
3880 An Inverse Docking Approach for Identifying New Potential Anticancer Targets

Authors: Soujanya Pasumarthi

Abstract:

Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibitcancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce theviability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT- 474cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.

Keywords: inverse docking, in silico screening, protein-ligand interactions, molecular docking

Procedia PDF Downloads 446
3879 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 133
3878 Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles

Authors: Hosam Abdelhady

Abstract:

Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells.

Keywords: AFM, dendrimers, nanoparticles, DNA, gene therapy, imaging

Procedia PDF Downloads 73