Search results for: high frequency
21595 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter
Authors: Bartosz Kedra, Robert Malkowski
Abstract:
This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer
Procedia PDF Downloads 32321594 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types
Authors: Qianxi Lv, Junying Liang
Abstract:
Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity
Procedia PDF Downloads 17821593 Transit Network Design Problem Issues and Challenges
Authors: Mahmoud Owais
Abstract:
Public Transit (P.T) is very important means to reduce traffic congestion, to improve urban environmental conditions and consequently affects people social lives. Planning, designing and management of P.T are the key issues for offering a competitive mode that can compete with the private transportation. These transportation planning, designing and management issues are addressed in the Transit Network Design Problem (TNDP). It deals with a complete hierarchy of decision making process. It includes strategic, tactical and operational decisions. The main body of TNDP is two stages, namely; route design stage and frequency setting. The TNDP is extensively studied in the last five decades; however the research gate is still widely open due to its many practical and modeling challenges. In this paper, a comprehensive background is given to illustrate the issues and challenges related to the TNDP to help in directing the incoming researches towards the untouched areas of the problem.Keywords: frequency setting, network design, transit planning, urban planning
Procedia PDF Downloads 38421592 Proposals of Exposure Limits for Infrasound From Wind Turbines
Authors: M. Pawlaczyk-Łuszczyńska, T. Wszołek, A. Dudarewicz, P. Małecki, M. Kłaczyński, A. Bortkiewicz
Abstract:
Human tolerance to infrasound is defined by the hearing threshold. Infrasound that cannot be heard (or felt) is not annoying and is not thought to have any other adverse or health effects. Recent research has largely confirmed earlier findings. ISO 7196:1995 recommends the use of G-weighted characteristics for the assessment of infrasound. There is a strong correlation between G-weighted SPL and annoyance perception. The aim of this study was to propose exposure limits for infrasound from wind turbines. However, only a few countries have set limits for infrasound. These limits are usually no higher than 85-92 dBG, and none of them are specific to wind turbines. Over the years, a number of studies have been carried out to determine hearing thresholds below 20 Hz. It has been recognized that 10% of young people would be able to perceive 10 Hz at around 90 dB, and it has also been found that the difference in median hearing thresholds between young adults aged around 20 years and older adults aged over 60 years is around 10 dB, irrespective of frequency. This shows that older people (up to about 60 years of age) retain good hearing in the low frequency range, while their sensitivity to higher frequencies is often significantly reduced. In terms of exposure limits for infrasound, the average hearing threshold corresponds to a tone with a G-weighted SPL of about 96 dBG. In contrast, infrasound at Lp,G levels below 85-90 dBG is usually inaudible. The individual hearing threshold can, therefore be 10-15 dB lower than the average threshold, so the recommended limits for environmental infrasound could be 75 dBG or 80 dBG. It is worth noting that the G86 curve has been taken as the threshold of auditory perception of infrasound reached by 90-95% of the population, so the G75 and G80 curves can be taken as the criterion curve for wind turbine infrasound. Finally, two assessment methods and corresponding exposure limit values have been proposed for wind turbine infrasound, i.e. method I - based on G-weighted sound pressure level measurements and method II - based on frequency analysis in 1/3-octave bands in the frequency range 4-20 Hz. Separate limit values have been set for outdoor living areas in the open countryside (Area A) and for noise sensitive areas (Area B). In the case of Method I, infrasound limit values of 80 dBG (for areas A) and 75 dBG (for areas B) have been proposed, while in the case of Method II - criterion curves G80 and G75 have been chosen (for areas A and B, respectively).Keywords: infrasound, exposure limit, hearing thresholds, wind turbines
Procedia PDF Downloads 8321591 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 13821590 The Use of Nuclear Generation to Provide Power System Stability
Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li
Abstract:
The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.Keywords: frequency control, nuclear power generation, power system stability, system inertia
Procedia PDF Downloads 43721589 Transmission Loss Analysis for Panels Laminated with Felt and Film
Authors: Yoshio Kurosawa
Abstract:
To reduce the interior noise of cars in high-frequency region, sound proof materials are laminated with the body panels and the interior trims. Therefore, sound proof properties of the laminates play an important role for the efficient acoustical design. A program code which predicts both sound absorption properties and sound insulation properties of the laminates are developed. This program code is used for transfer matrix method by Biot theory. This report described the outline of this program code, and the calculation results almost agreed with the experimental results.Keywords: porous media, transmission loss, Biot theory, transfer matrix method
Procedia PDF Downloads 27421588 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia
Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy
Abstract:
Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA
Procedia PDF Downloads 27421587 Metallurgical Analysis of Surface Defect in Telescopic Front Fork
Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya
Abstract:
Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.Keywords: telescopic front fork, induction welding, hook crack, internal oxidation
Procedia PDF Downloads 13121586 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces
Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic
Abstract:
Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.Keywords: contact time, impact dynamics, oscillation, pear-shape droplet
Procedia PDF Downloads 45421585 Vibration Analysis and Optimization Design of Ultrasonic Horn
Authors: Kuen Ming Shu, Ren Kai Ho
Abstract:
Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration
Procedia PDF Downloads 11621584 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory
Authors: Korosh Khorshidi, Mohammad Khodadadi
Abstract:
In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate
Procedia PDF Downloads 38721583 A Theoretical Overview of Thermoluminescence
Authors: Sadhana Agrawal, Tarkeshwari Verma, Shmbhavi Katyayan
Abstract:
The magnificently accentuating phenomenon of luminescence has gathered a lot of attentions from last few decades. Probably defined as the one involving emission of light from certain kinds of substances on absorbing various energies in the form of external stimulus, the phenomenon claims a versatile pertinence. First observed and reported in an extract of Ligrium Nephriticum by Monards, the phenomenon involves turning of crystal clear water into colorful fluid when comes in contact with the special wood. In words of Sir G.G. Stokes, the phenomenon actually involves three different techniques – absorption, excitation and emission. With variance in external stimulus, the corresponding luminescence phenomenon is obtained. Here, this paper gives a concise discussion of thermoluminescence which is one of the types of luminescence obtained when the external stimulus is given in form of heat energy. A deep insight of thermoluminescence put forward a qualitative analysis of various parameters such as glow curves peaks, trap depth, frequency factors and order of kinetics.Keywords: frequency factor, glow curve peaks, thermoluminescence, trap depth
Procedia PDF Downloads 39921582 Did Chilling Injury of Rice Decrease under Climate Warming? A Case Study in Northeast China
Authors: Fengmei Yao, Pengcheng Qin, Jiahua Zhang, Min Liu
Abstract:
Global warming is expected to reduce the risk of low temperature stress in rice grown in temperate regions, but this impact has not been well verified by empirical studies directly on chilling injury in rice. In this study, a case study in Northeast China was presented to investigate whether the frequencies of chilling injury declined as a result of climate change, in comprehensive consideration of the potential effects from autonomous adaptation of rice production in response to climate change, such as shifts in cultivation timing and rice cultivars. It was found that frequency of total chilling injury (either delayed-growth type or sterile-type in a year) decreased but only to a limit extent in the context of climate change, mainly owing to a pronounced decrease in frequency of the delayed-growth chilling injury, while there was no overwhelming decreasing tendency for frequency of the sterile-type chilling injury, rather, it even increased considerably for some regions. If changes in cultivars had not occurred, risks of chilling injury of both types would have been much lower, specifically for the sterile-type chilling injury for avoiding deterioration in chilling sensitivity of rice cultivars. In addition, earlier planting helped lower the risk of chilling injury but still can not overweight the effects of introduction of new cultivars. It was concluded that risks of chilling injury in rice would not necessarily decrease as a result of climate change, considering the accompanying adaptation process may increase the chilling sensitivity of rice production system in a warmer climate conditions, and thus precautions should still be taken.Keywords: chilling injury, rice, CERES-rice model, climate warming, North east China
Procedia PDF Downloads 33421581 Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation
Authors: Mohamad Saberi, Arash Sohrabi
Abstract:
Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.Keywords: TLD, seismic table, structural system, Hunzer linear behaviour
Procedia PDF Downloads 37821580 Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Two Dimensional Baysian Speckle Tracking Technique
Authors: Li-Kai Kuo, Shyh-Hau Wang
Abstract:
The kinetic trajectory of the median nerve (MN) in the wrist has shown to be capable of being applied to assess the carpal tunnel syndrome (CTS), and was found able to be detected by high-frequency ultrasound image via motion tracking technique. Yet, previous study may not quickly perform the measurement due to the use of a single element transducer for ultrasound image scanning. Therefore, previous system is not appropriate for being applied to clinical application. In the present study, B-mode ultrasound images of the wrist corresponding to movements of fingers from flexion to extension were acquired by clinical applicable real-time scanner. The kinetic trajectories of MN were off-line estimated utilizing two dimensional Baysian speckle tracking (TDBST) technique. The experiments were carried out from ten volunteers by ultrasound scanner at 12 MHz frequency. Results verified from phantom experiments have demonstrated that TDBST technique is able to detect the movement of MN based on signals of the past and present information and then to reduce the computational complications associated with the effect of such image quality as the resolution and contrast variations. Moreover, TDBST technique tended to be more accurate than that of the normalized cross correlation tracking (NCCT) technique used in previous study to detect movements of the MN in the wrist. In response to fingers’ flexion movement, the kinetic trajectory of the MN moved toward the ulnar-palmar direction, and then toward the radial-dorsal direction corresponding to the extensional movement. TDBST technique and the employed ultrasound image scanner have verified to be feasible to sensitively detect the kinetic trajectory and displacement of the MN. It thus could be further applied to diagnose CTS clinically and to improve the measurements to assess 3D trajectory of the MN.Keywords: baysian speckle tracking, carpal tunnel syndrome, median nerve, motion tracking
Procedia PDF Downloads 49521579 Molecular Study of P53- and Rb-Tumor Suppressor Genes in Human Papilloma Virus-Infected Breast Cancers
Authors: Shakir H. Mohammed Al-Alwany, Saad Hasan M. Ali, Ibrahim Mohammed S. Shnawa
Abstract:
The study was aimed to define the percentage of detection of high-oncogenic risk types of HPV and their genotyping in archival tissue specimens that ranged from apparently healthy tissue to invasive breast cancer by using one of the recent versions of In Situ Hybridization(ISH) 0.2. To find out rational significance of such genotypes as well as over expressed products of mutants P53 and RB genes on the severity of underlying breast cancers. The DNA of HPV was detected in 46.5 % of tissues from breast cancers while HPV DNA in the tissues from benign breast tumours was detected in 12.5%. No HPV positive–ISH reaction was detected in healthy breast tissues of the control group. HPV DNA of genotypes (16, 18, 31 and 33) was detected in malignant group in frequency of 25.6%, 27.1%, 30.2% and 12.4%, respectively. Over expression of p53 was detected by IHC in 51.2% breast cancer cases and in 50% benign breast tumour group, while none of control group showed P53- over expression. Retinoblastoma protein was detected by IHC test in 49.7% of malignant breast tumours, 54.2% of benign breast tumours but no signal was reported in the tissues of control group. The significance prevalence of expression of mutated p53 & Rb genes as well as detection of high-oncogenic HPV genotypes in patients with breast cancer supports the hypothesis of an etiologic role for the virus in breast cancer development.Keywords: human papilloma virus, P53, RB, breast cancer
Procedia PDF Downloads 48021578 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions
Authors: M. Tarik Boyraz, M. Bilge Imer
Abstract:
Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.Keywords: heat treatment, IN738LC, simulations, super-alloys
Procedia PDF Downloads 24821577 Musculoskeletal Disorders among Employees of an Assembly Industrial Workshop: Biomechanical Constrain’s Semi-Quantitative Analysis
Authors: Lamia Bouzgarrou, Amira Omrane, Haithem Kalel, Salma Kammoun
Abstract:
Background: During recent decades, mechanical and electrical industrial sector has greatly expanded with a significant employability potential. However, this sector faces the increasing prevalence of musculoskeletal disorders with heavy consequences associated with direct and indirect costs. Objective: The current intervention was motivated by large musculoskeletal upper limbs and back disorders frequency among the operators of an assembly workshop in a leader company specialized in sanitary equipment and water and gas connections. We aimed to identify biomechanical constraints among these operators through activity and biomechanical exposures semi-quantitative analysis based on video recordings and MUSKA-TMS software. Methods: We conducted, open observations and exploratory interviews at first, in order to overall understand work situation. Then, we analyzed operator’s activity through systematic observations and interviews. Finally, we conducted a semi-quantitative biomechanical constraints analysis with MUSKA-TMS software after representative activity period video recording. The assessment of biomechanical constrains was based on different criteria; biomechanical characteristics (work positions), aggravating factor (cold, vibration, stress, etc.) and exposure time (duration and frequency of solicitations, recovery phase); with a synthetic score of risk level variable from 1 to 4 (1: low risk of developing MSD and 4: high risk). Results: Semi-quantitative analysis objective many elementary operations with higher biomechanical constrains like high repetitiveness, insufficient recovery time and constraining angulation of shoulders, wrists and cervical spine. Among these risky elementary operations we sited the assembly of sleeve with the body, the assembly of axis, and the control on testing table of gas valves. Transformation of work situations were recommended, covering both the redevelopment of industrial areas and the integration of new tools and equipment of mechanical handling that reduces operator exposure to vibration. Conclusion: Musculoskeletal disorders are complex and costly disorders. Moreover, an approach centered on the observation of the work can promote the interdisciplinary dialogue and exchange between actors with the objective to maximize the performance of a company and improve the quality of life of operators.Keywords: musculoskeletal disorders, biomechanical constrains, semi-quantitative analysis, ergonomics
Procedia PDF Downloads 16121576 Ultrasonic Atomizer for Turbojet Engines
Authors: Aman Johri, Sidhant Sood, Pooja Suresh
Abstract:
This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations
Procedia PDF Downloads 24021575 Frequency Interpretation of a Wave Function, and a Vertical Waveform Treated as A 'Quantum Leap'
Authors: Anthony Coogan
Abstract:
Born’s probability interpretation of wave functions would have led to nearly identical results had he chosen a frequency interpretation instead. Logically, Born may have assumed that only one electron was under consideration, making it nonsensical to propose a frequency wave. Author’s suggestion: the actual experimental results were not of a single electron; rather, they were groups of reflected x-ray photons. The vertical waveform used by Scrhödinger in his Particle in the Box Theory makes sense if it was intended to represent a quantum leap. The author extended the single vertical panel to form a bar chart: separate panels would represent different energy levels. The proposed bar chart would be populated by reflected photons. Expansion of basic ideas: Part of Scrhödinger’s ‘Particle in the Box’ theory may be valid despite negative criticism. The waveform used in the diagram is vertical, which may seem absurd because real waves decay at a measurable rate, rather than instantaneously. However, there may be one notable exception. Supposedly, following from the theory, the Uncertainty Principle was derived – may a Quantum Leap not be represented as an instantaneous waveform? The great Scrhödinger must have had some reason to suggest a vertical waveform if the prevalent belief was that they did not exist. Complex wave forms representing a particle are usually assumed to be continuous. The actual observations made were x-ray photons, some of which had struck an electron, been reflected, and then moved toward a detector. From Born’s perspective, doing similar work the years in question 1926-7, he would also have considered a single electron – leading him to choose a probability distribution. Probability Distributions appear very similar to Frequency Distributions, but the former are considered to represent the likelihood of future events. Born’s interpretation of the results of quantum experiments led (or perhaps misled) many researchers into claiming that humans can influence events just by looking at them, e.g. collapsing complex wave functions by 'looking at the electron to see which slit it emerged from', while in reality light reflected from the electron moved in the observer’s direction after the electron had moved away. Astronomers may say that they 'look out into the universe' but are actually using logic opposed to the views of Newton and Hooke and many observers such as Romer, in that light carries information from a source or reflector to an observer, rather the reverse. Conclusion: Due to the controversial nature of these ideas, especially its implications about the nature of complex numbers used in applications in science and engineering, some time may pass before any consensus is reached.Keywords: complex wave functions not necessary, frequency distributions instead of wave functions, information carried by light, sketch graph of uncertainty principle
Procedia PDF Downloads 19921574 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications
Authors: S. Koul, Joshua Adedamola
Abstract:
Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.Keywords: ICP, dopant, EMI, shielding
Procedia PDF Downloads 8121573 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System
Authors: Hao Wang, Shuguo Pan
Abstract:
The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm
Procedia PDF Downloads 9821572 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis
Authors: Jamal Takhchi
Abstract:
The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.Keywords: structural intensity, NVH, body in white, irrotatational intensity
Procedia PDF Downloads 15521571 Peculiarities of the Clinical Course of the Osteoarthritis in Shift-Workers: Analysis of Clinical Data and Questionnaries
Authors: Oksana Mykytyuk
Abstract:
Chronic desynchronosis is an important factor of progression of osteoarthritis in shift workers. 80 patients with primary osteoarthritis (female:male ratio = 3:1, average age: 57.6 years, average disease duration: 6.4 years, radiological stage: II-III) were examined, 42% reported systematic night shift-work for more than two years. Full clinical examination was performed, all patients filled in SF-36, WOMAC questonnaries, marked visual analog scales for estimation of pain intensity and general well-being. Patients who had been exposed to night work had significantly worse clinical course of osteoarthritis marked by more (27.5%, p < 0.05) extensive pain syndrome, especially at night hours, (10.00 pm-2.00 am period) and estimated life quality as poorer comparing those working at day time. Osteoarthritis initiation occurred at earlier age in them comparing those who worked in non-shifted regimen. They showed a trend to generalized affliction of bigger quantity of joint groups, higher frequency of synovitis as well. Shift-workers administered higher doses of non-steroid anti-inflammatory drugs (NSAIDs) and estimated their effect as lower (39.6% average daily relief vs 62.5% in non-shift workers after 10 days of regular application of therapy). Frequency of chronic NSAID-induced gastropathy was 25% higher among night-workers. Shift-workers are predisposed to worse course of osteoarthritis with marked clinical symptoms, requiring higher doses on NSAIDs and with inclination towards bigger frequency of complication. That should be kept in mind while developing individual treatment and secondary prophylaxis strategy.Keywords: desynchronosis, osteoarthritis, questionnaries, shift-work
Procedia PDF Downloads 12721570 Postprandial Satiety, Sweets Intake, Physical Activity, and Depressive Symptoms in Relation to Rs9939609 Polymorphism of the FTO Gene
Authors: Małgorzata Wrzosek, Nina Baruch, Beata Jabłonowska-Lietz
Abstract:
Background: The fat mass & obesity-associated (FTO) gene is linked to an increased risk of obesity. However, the relation between rs9939609 and eating behaviors or energy expenditure is not fully elucidated. The aim of this study was to investigate the relationship between the rs9939609 polymorphism of the FTO gene and the postprandial satiety, sweets intake, physical activity and depressive symptoms in patients with obesity. Methods: The study group consisted of 585 subjects with a BMI of 42.97.0 kg/m². The rs9939609 polymorphism of the FTO gene was examined using real time – PCR method. The severity of depressive symptoms was assessed with the Beck Depression Inventory (BDI-II). Information was obtained about demographics, eating habits and lifestyle. Results: More than half (63.5%) of the patients reported consumption of sweets between main meals and 30% declared high and very high postprandial satiety and the frequency of TA/AA carriers in rs9939609 (FTO) compared with TT carriers was similar. Significantly lower BDI-II scores were found in subjects with higher level of physical activity and it was seen amongst patients with the AA and AT genotypes of the FTO rs9939609 polymorphism. Conclusion: Obesity is a highly heritable trait, but eating habits also appear as major factors affecting obesity development.Keywords: FTO polymorphism, physical activity, obesity, depression, postprandial satiety, sugary foods, sweets
Procedia PDF Downloads 12821569 Determination of the Thermally Comfortable Air Temperature with Consideration of Individual Clothing and Activity as Preparation for a New Smart Home Heating System
Authors: Alexander Peikos, Carole Binsfeld
Abstract:
The aim of this paper is to determine a thermally comfortable air temperature in an automated living room. This calculated temperature should serve as input for a user-specific and dynamic heating control in such a living space. In addition to the usual physical factors (air temperature, humidity, air velocity, and radiation temperature), individual clothing and activity should be taken into account. The calculation of such a temperature is based on different methods and indices which are usually used for the evaluation of the thermal comfort. The thermal insulation of the worn clothing is determined with a Radio Frequency Identification system. The activity performed is only taken into account indirectly through the generated heart rate. All these methods are ultimately very well suited for use in temperature regulation in an automated home, but still require further research and extensive evaluation.Keywords: smart home, thermal comfort, predicted mean vote, radio frequency identification
Procedia PDF Downloads 15921568 A Comparative Analysis of Various Companding Techniques Used to Reduce PAPR in VLC Systems
Authors: Arushi Singh, Anjana Jain, Prakash Vyavahare
Abstract:
Recently, Li-Fi(light-fiedelity) has been launched based on VLC(visible light communication) technique, 100 times faster than WiFi. Now 5G mobile communication system is proposed to use VLC-OFDM as the transmission technique. The VLC system focused on visible rays, is considered for efficient spectrum use and easy intensity modulation through LEDs. The reason of high speed in VLC is LED, as they flicker incredibly fast(order of MHz). Another advantage of employing LED is-it acts as low pass filter results no out-of-band emission. The VLC system falls under the category of ‘green technology’ for utilizing LEDs. In present scenario, OFDM is used for high data-rates, interference immunity and high spectral efficiency. Inspite of the advantages OFDM suffers from large PAPR, ICI among carriers and frequency offset errors. Since, the data transmission technique used in VLC system is OFDM, the system suffers the drawbacks of OFDM as well as VLC, the non-linearity dues to non-linear characteristics of LED and PAPR of OFDM due to which the high power amplifier enters in non-linear region. The proposed paper focuses on reduction of PAPR in VLC-OFDM systems. Many techniques are applied to reduce PAPR such as-clipping-introduces distortion in the carrier; selective mapping technique-suffers wastage of bandwidth; partial transmit sequence-very complex due to exponentially increased number of sub-blocks. The paper discusses three companding techniques namely- µ-law, A-law and advance A-law companding technique. The analysis shows that the advance A-law companding techniques reduces the PAPR of the signal by adjusting the companding parameter within the range. VLC-OFDM systems are the future of the wireless communication but non-linearity in VLC-OFDM is a severe issue. The proposed paper discusses the techniques to reduce PAPR, one of the non-linearities of the system. The companding techniques mentioned in this paper provides better results without increasing the complexity of the system.Keywords: non-linear companding techniques, peak to average power ratio (PAPR), visible light communication (VLC), VLC-OFDM
Procedia PDF Downloads 28521567 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry
Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner
Abstract:
Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity
Procedia PDF Downloads 10721566 Liquid Food Sterilization Using Pulsed Electric Field
Authors: Tanmaya Pradhan, K. Midhun, M. Joy Thomas
Abstract:
Increasing the shelf life and improving the quality are important objectives for the success of packaged liquid food industry. One of the methods by which this can be achieved is by deactivating the micro-organisms present in the liquid food through pasteurization. Pasteurization is done by heating, but some serious disadvantages such as the reduction in food quality, flavour, taste, colour, etc. were observed because of heat treatment, which leads to the development of newer methods instead of pasteurization such as treatment using UV radiation, high pressure, nuclear irradiation, pulsed electric field, etc. In recent years the use of the pulsed electric field (PEF) for inactivation of the microbial content in the food is gaining popularity. PEF uses a very high electric field for a short time for the inactivation of microorganisms, for which we require a high voltage pulsed power source. Pulsed power sources used for PEF treatments are usually in the range of 5kV to 50kV. Different pulse shapes are used, such as exponentially decaying and square wave pulses. Exponentially decaying pulses are generated by high power switches with only turn-on capacity and, therefore, discharge the total energy stored in the capacitor bank. These pulses have a sudden onset and, therefore, a high rate of rising but have a very slow decay, which yields extra heat, which is ineffective in microbial inactivation. Square pulses can be produced by an incomplete discharge of a capacitor with the help of a switch having both on/off control or by using a pulse forming network. In this work, a pulsed power-based system is designed with the help of high voltage capacitors and solid-state switches (IGBT) for the inactivation of pathogenic micro-organism in liquid food such as fruit juices. The high voltage generator is based on the Marx generator topology, which can produce variable amplitude, frequency, and pulse width according to the requirements. Liquid food is treated in a chamber where pulsed electric field is produced between stainless steel electrodes using the pulsed output voltage of the supply. Preliminary bacterial inactivation tests were performed by subjecting orange juice inoculated with Escherichia Coli bacteria. With the help of the developed pulsed power source and the chamber, the inoculated orange has been PEF treated. The voltage was varied to get a peak electric field up to 15kV/cm. For a total treatment time of 200µs, a 30% reduction in the bacterial count has been observed. The detailed results and analysis will be presented in the final paper.Keywords: Escherichia coli bacteria, high voltage generator, microbial inactivation, pulsed electric field, pulsed forming line, solid-state switch
Procedia PDF Downloads 184