Search results for: 2d and 3d data conversion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26320

Search results for: 2d and 3d data conversion

25300 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 376
25299 Toluene Methylation with Methanol Using Synthesized HZSM-5 Catalysts Modified by Silylation and Dealumination

Authors: Weerachit Pulsawas, Thirasak Rirksomboon

Abstract:

Due to its abundance from catalytic reforming and thermal cracking of naphtha, toluene could become more value-added compound if it is converted into xylenes, particularly p-xylene, via toluene methylation. Attractively, toluene methylation with methanol is an alternative route to produce xylenes in the absence of other hydrocarbon by-products for which appropriate catalyst would be utilized. In this study, HZSM-5 catalysts with Si/Al molar ratio of 100 were synthesized via hydrothermal treatment and modified by either chemical liquid deposition using tetraethyl-orthosilicate or dealumination with steam. The modified catalysts were characterized by several techniques and tested for their catalytic activity in a continuous down-flow fixed bed reactor. Various operating conditions including WHSV’s of 5 to 20 h-1, reaction temperatures of 400 to 500 °C, and toluene-to-methanol molar ratios (T/M) of 1 to 4 were investigated for attaining possible highest p-xylene selectivity. As a result, the catalytic activity of parent HZSM-5 with temperature of 400 °C, T/M of 4 and WHSV of 24 h-1 showed 65.36% in p-xylene selectivity and 11.90% in toluene conversion as demonstrated for 4 h on stream.

Keywords: toluene methylaion, HZSM-5, silylation, dealumination

Procedia PDF Downloads 197
25298 Photoelectrochemical Study of Nanostructured Acropora-Like Lead Sulfide Thin Films

Authors: S. Kaci, A. Keffous, O. Fellahi, I. Bozetine, H. Menari

Abstract:

In this paper, we report the fabrication and characterization of Acropora-like lead sulfide nanostructured thin films using chemical bath deposition. The method has the strong points of low temperature and no surfactant, comparing with the other method. The preferential growth directions of the broad branches were indexed as along (200) directions. The photoelectrochemical property of the as-deposited thin films was also investigated. Photoelectrochemical characterization was performed in the aim to determine the flat band potential (Vfb) and to confirm the n-type character of PbS, elucidated from the J(V) curves both in the dark and under illumination. The apparition of the photocurrent Jph started at a potential VON of −0.41 V/ECS and increased towards the anodic direction, which is typical of n-type behavior. The near infrared absorbance spectrum displayed an absorbance edge at 1959 nm, showing blue shift comparing to bulk PbS (3020 nm). These nanostructured lead sulfide thin films may have potential application as dispersed photoelectrode capable of generating H2 under visible light.

Keywords: lead sulfide, nanostructures, photo-conversion, thin films

Procedia PDF Downloads 366
25297 Potential Assessment and Techno-Economic Evaluation of Photovoltaic Energy Conversion System: A Case of Ethiopia Light Rail Transit System

Authors: Asegid Belay Kebede, Getachew Biru Worku

Abstract:

The Earth and its inhabitants have faced an existential threat as a result of severe manmade actions. Global warming and climate change have been the most apparent manifestations of this threat throughout the world, with increasingly intense heat waves, temperature rises, flooding, sea-level rise, ice sheet melting, and so on. One of the major contributors to this disaster is the ever-increasing production and consumption of energy, which is still primarily fossil-based and emits billions of tons of hazardous GHG. The transportation industry is recognized as the biggest actor in terms of emissions, accounting for 24% of direct CO2 emissions and being one of the few worldwide sectors where CO2 emissions are still growing. Rail transportation, which includes all from light rail transit to high-speed rail services, is regarded as one of the most efficient modes of transportation, accounting for 9% of total passenger travel and 7% of total freight transit. Nonetheless, there is still room for improvement in the transportation sector, which might be done by incorporating alternative and/or renewable energy sources. As a result of these rapidly changing global energy situations and rapidly dwindling fossil fuel supplies, we were driven to analyze the possibility of renewable energy sources for traction applications. Even a small achievement in energy conservation or harnessing might significantly influence the total railway system and have the potential to transform the railway sector like never before. As a result, the paper begins by assessing the potential for photovoltaic (PV) power generation on train rooftops and existing infrastructure such as railway depots, passenger stations, traction substation rooftops, and accessible land along rail lines. As a result, a method based on a Google Earth system (using Helioscopes software) is developed to assess the PV potential along rail lines and on train station roofs. As an example, the Addis Ababa light rail transit system (AA-LRTS) is utilized. The case study examines the electricity-generating potential and economic performance of photovoltaics installed on AALRTS. As a consequence, the overall capacity of solar systems on all stations, including train rooftops, reaches 72.6 MWh per day, with an annual power output of 10.6 GWh. Throughout a 25-year lifespan, the overall CO2 emission reduction and total profit from PV-AA-LRTS can reach 180,000 tons and 892 million Ethiopian birrs, respectively. The PV-AA-LRTS has a 200% return on investment. All PV stations have a payback time of less than 13 years, and the price of solar-generated power is less than $0.08/kWh, which can compete with the benchmark price of coal-fired electricity. Our findings indicate that PV-AA-LRTS has tremendous potential, with both energy and economic advantages.

Keywords: sustainable development, global warming, energy crisis, photovoltaic energy conversion, techno-economic analysis, transportation system, light rail transit

Procedia PDF Downloads 79
25296 Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides

Authors: Gheorghiţa Mitran, Adriana Urdă, Mihaela Florea, Octavian Dumitru Pavel, Florentina Neaţu

Abstract:

Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content.

Keywords: malic acid, oxidative dehydrogenation, hydrogenation, oxaloacetic acid

Procedia PDF Downloads 188
25295 Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell

Authors: Chadel Meriem, Bensmaine Souhila, Chadel Asma, Bouchikhi Chaima

Abstract:

The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer.

Keywords: methylammonium lead Iodide, perovskite solar cell, caracteristic J-V, effeciency

Procedia PDF Downloads 76
25294 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 263
25293 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 370
25292 Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species.

Keywords: catalytic combustion, honeycomb monolith, plug flow reactor, surface reactions

Procedia PDF Downloads 233
25291 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 89
25290 Empirical Acceleration Functions and Fuzzy Information

Authors: Muhammad Shafiq

Abstract:

In accelerated life testing approaches life time data is obtained under various conditions which are considered more severe than usual condition. Classical techniques are based on obtained precise measurements, and used to model variation among the observations. In fact, there are two types of uncertainty in data: variation among the observations and the fuzziness. Analysis techniques, which do not consider fuzziness and are only based on precise life time observations, lead to pseudo results. This study was aimed to examine the behavior of empirical acceleration functions using fuzzy lifetimes data. The results showed an increased fuzziness in the transformed life times as compare to the input data.

Keywords: acceleration function, accelerated life testing, fuzzy number, non-precise data

Procedia PDF Downloads 303
25289 Evaluating Alternative Structures for Prefix Trees

Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha

Abstract:

Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.

Keywords: data structures, indexing, tree structure, trie, information retrieval

Procedia PDF Downloads 455
25288 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 166
25287 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data

Authors: Bharat Singh Om Prakash Vyas

Abstract:

Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.

Keywords: ALS, NMF, high dimensional data, RMSE

Procedia PDF Downloads 346
25286 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 127
25285 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 191
25284 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 106
25283 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 114
25282 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: cloud storage security, sharing storage, attributes, Hash algorithm

Procedia PDF Downloads 392
25281 A Density Functional Theory Study of Metal-Porphyrin Graphene for CO2 Hydration

Authors: Manju Verma, Parag A. Deshpande

Abstract:

Electronic structure calculations of hydrogen terminated metal-porphyrin graphene were carried out to explore the catalytic activity for CO2 hydration reaction. A ruthenium atom was substituted in place of carbon atom of graphene and ruthenium chelated carbon atoms were replaced by four nitrogen atoms in metal-porphyrin graphene system. Ruthenium atom created the active site for CO2 hydration reaction. Ruthenium-porphyrin graphene followed the mechanism of carbonic anhydrase enzyme for CO2 conversion to HCO3- ion. CO2 hydration reaction over ruthenium-porphyrin graphene proceeded via the elementary steps: OH- formation from H2O dissociation, CO2 bending in presence of nucleophilic attack of OH- ion, HCO3- ion formation from proton migration, HCO3- ion desorption by H2O addition. Proton transfer to yield HCO3- ion was observed as a rate limiting step from free energy landscape.

Keywords: ruthenium-porphyrin graphene, CO2 hydration, carbonic anhydrase, heterogeneous catalyst, density functional theory

Procedia PDF Downloads 264
25280 Kinetic Parameter Estimation from Thermogravimetry and Microscale Combustion Calorimetry

Authors: Rhoda Afriyie Mensah, Lin Jiang, Solomon Asante-Okyere, Xu Qiang, Cong Jin

Abstract:

Flammability analysis of extruded polystyrene (XPS) has become crucial due to its utilization as insulation material for energy efficient buildings. Using the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, the degradation kinetics of two pure XPS from the local market, red and grey ones, were obtained from the results of thermogravity analysis (TG) and microscale combustion calorimetry (MCC) experiments performed under the same heating rates. From the experiments, it was discovered that red XPS released more heat than grey XPS and both materials showed two mass loss stages. Consequently, the kinetic parameters for red XPS were higher than grey XPS. A comparative evaluation of activation energies from MCC and TG showed an insignificant degree of deviation signifying an equivalent apparent activation energy from both methods. However, different activation energy profiles as a result of the different chemical pathways were presented when the dependencies of the activation energies on extent of conversion for TG and MCC were compared.

Keywords: flammability, microscale combustion calorimetry, thermogravity analysis, thermal degradation, kinetic analysis

Procedia PDF Downloads 183
25279 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 107
25278 The Study on Life of Valves Evaluation Based on Tests Data

Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu

Abstract:

Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.

Keywords: censored data, temperature tests, valves, vibration tests

Procedia PDF Downloads 347
25277 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 309
25276 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.

Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis

Procedia PDF Downloads 410
25275 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 189
25274 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 182
25273 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 294
25272 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission

Procedia PDF Downloads 281
25271 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 475