Search results for: vertical acceleration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1635

Search results for: vertical acceleration

645 Movement of the Viscous Elastic Fixed Vertically Located Cylinder in Liquid with the Free Surface Under the Influence of Waves

Authors: T. J. Hasanova, C. N. Imamalieva

Abstract:

The problem about the movement of the rigid cylinder keeping the vertical position under the influence of running superficial waves in a liquid is considered. The indignation of a falling wave caused by the presence of the cylinder which moves is thus considered. Special decomposition on a falling harmonious wave is used. The problem dares an operational method. For a finding of the original decision, Considering that the image denominator represents a tabular function, Voltaire's integrated equation of the first sort which dares a numerical method is used. Cylinder movement in the continuous environment under the influence of waves is considered in work. Problems are solved by an operational method, thus originals of required functions are looked for by the numerical definition of poles of combinations of transcendental functions and calculation of not own integrals. Using specificity of a task below, Decisions are under construction the numerical solution of the integrated equation of Volter of the first sort that does not create computing problems of the complex roots of transcendental functions connected with search.

Keywords: rigid cylinder, linear interpolation, fluctuations, Voltaire's integrated equation, harmonious wave

Procedia PDF Downloads 319
644 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 93
643 Small Fixed-Wing UAV Physical Based Modeling, Simulation, and Validation

Authors: Ebrahim H. Kapeel, Ehab Safwat, Hossam Hendy, Ahmed M. Kamel, Yehia Z. Elhalwagy

Abstract:

Motivated by the problem of the availability of high-fidelity flight simulation models for small unmanned aerial vehicles (UAVs). This paper focuses on the geometric-mass inertia modeling and the actuation system modeling for the small fixed-wing UAVs. The UAV geometric parameters for the body, wing, horizontal and vertical tail are physically measured. Pendulum experiment with high-grade sensors and data analysis using MATLAB is used to estimate the airplane moment of inertia (MOI) model. Finally, UAV’s actuation system is modeled by estimating each servo transfer function by using the system identification, which uses experimental measurement for input and output angles through using field-programmable gate array (FPGA). Experimental results for the designed models are given to illustrate the effectiveness of the methodology. It also gives a very promising result to finalize the open-loop flight simulation model through modeling the propulsion system and the aerodynamic system.

Keywords: unmanned aerial vehicle, geometric-mass inertia model, system identification, Simulink

Procedia PDF Downloads 179
642 Enhancing Embedded System Efficiency with Digital Signal Processing Cores

Authors: Anil H. Dhanawade, Akshay S., Harshal M. Lakesar

Abstract:

This paper presents a comprehensive analysis of the performance advantages offered by DSP (Digital Signal Processing) cores compared to traditional MCU (Microcontroller Unit) cores in the execution of various functions critical to real-time applications. The focus is on the integration of DSP functionalities, specifically in the context of motor control applications such as Field-Oriented Control (FOC), trigonometric calculations, back-EMF estimation, digital filtering, and high-resolution PWM generation. Through comparative analysis, it is demonstrated that DSP cores significantly enhance processing efficiency, achieving faster execution times for complex mathematical operations essential for precise torque and speed control. The study highlights the capabilities of DSP cores, including single-cycle Multiply-Accumulate (MAC) operations and optimized hardware for trigonometric functions, which collectively reduce latency and improve real-time performance. In contrast, MCU cores, while capable of performing similar tasks, typically exhibit longer execution times due to reliance on software-based solutions and lack of dedicated hardware acceleration. The findings underscore the critical role of DSP cores in applications requiring high-speed processing and low-latency response, making them indispensable in the automotive, industrial, and robotics sectors. This work serves as a reference for future developments in embedded systems, emphasizing the importance of architecture choice in achieving optimal performance in demanding computational tasks.

Keywords: CPU core, DSP, assembly code, motor control

Procedia PDF Downloads 16
641 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 269
640 Effectiveness of the Resistance to Irradiance Test on Sunglasses Standards

Authors: Mauro Masili, Liliane Ventura

Abstract:

It is still controversial in the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on reports in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-hour radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits against UV radiation. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.

Keywords: ISO 12312-1, solar simulator, sunglasses standards, UV protection

Procedia PDF Downloads 197
639 Application of Flexi-Wall in Noise Barriers Renewal

Authors: B. Daee, H. M. El Naggar

Abstract:

This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.

Keywords: noise barrier, polyurethane foam, accelerated construction, full-scale experiment

Procedia PDF Downloads 292
638 Periodical System of Isotopes

Authors: Andriy Magula

Abstract:

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.

Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction

Procedia PDF Downloads 17
637 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 98
636 Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer

Authors: Sajjad Esmaeili, Robert Krause, Lukas Gerlich, Alireza Mohammadian Kia, Benjamin Uhlig

Abstract:

This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte.

Keywords: Cobalt MOCVD, direct Cu electrochemical deposition (ECD), metallization technology, through-silicon-via (TSV)

Procedia PDF Downloads 158
635 A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations

Authors: Mohamed Boubekri, Jaewook Lee

Abstract:

The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution.

Keywords: daylight factor, hourly daylight illuminance, daylight autonomy, useful daylight illuminance

Procedia PDF Downloads 284
634 Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles

Authors: Štěpán Hýsek, Milan Podlena, Miloš Pavelek, Matěj Hodoušek, Martin Böhm, Petra Gajdačová

Abstract:

Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material.

Keywords: composite, lignocellulosic materials, straw, cold plasma, surface treatment

Procedia PDF Downloads 330
633 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 167
632 Dry Friction Occurring in the Suspensions for Passive and Switchable Damper Systems and Its Effect on Ride Comfort

Authors: Aref M. A. Soliman, Mahmoud A. Hassan

Abstract:

In all vehicle suspension, there is a dry friction. One of the various active suspensions, which have been shown to have considerable practical potential, is a switchable damper suspension system. In this paper, vehicle ride comfort for the passive and switchable damper suspension systems as affected by the value of frictional force generated in springs is discussed. A mathematical model of a quarter vehicle model for two setting switchable damper suspension system with dry friction force is developed to evaluate vehicle ride comfort in terms of suspension performance criteria. The vehicle itself is treated as a rigid body undergoing vertical motions. Comparisons between passive and switchable damper suspensions systems with dry friction force in terms of ride performance are also discussed. The results showed that the ride comfort for the passive and switchable damper suspension systems was deteriorated due to dry friction occurring in the suspensions. The two setting switchable damper with and without dry friction force gives better ride improvements compared with the passive suspension system. Also, the obtained results show an optimum value of damping ratio of the passive suspension system.

Keywords: ride comfort, dry friction, switchable damper, passive suspension

Procedia PDF Downloads 372
631 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example

Authors: Hong Geng, Zaiyu Fan

Abstract:

With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.

Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation

Procedia PDF Downloads 116
630 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment

Authors: C. Lanzerstorfer

Abstract:

The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.

Keywords: air classification, converter dust, recycling, zinc

Procedia PDF Downloads 425
629 Model Studies on Shear Behavior of Reinforced Reconstituted Clay

Authors: B. A. Mir, A. Juneja

Abstract:

In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.

Keywords: reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests

Procedia PDF Downloads 409
628 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model

Authors: Can Huang, Xiaoliang Wang, Qingquan Liu

Abstract:

Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.

Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH

Procedia PDF Downloads 64
627 Survival Analysis of Identifying the Risk Factors of Affecting the First Recurrence Time of Breast Cancer: The Case of Tigray, Ethiopia

Authors: Segen Asayehegn

Abstract:

Introduction: In Tigray, Ethiopia, next to cervical cancer, breast cancer is one of the most common cancer health problems for women. Objectives: This article is proposed to identify the prospective and potential risk factors affecting the time-to-first-recurrence of breast cancer patients in Tigray, Ethiopia. Methods: The data were taken from the patient’s medical record that registered from January 2010 to January 2020. The study considered a sample size of 1842 breast cancer patients. Powerful non-parametric and parametric shared frailty survival regression models (FSRM) were applied, and model comparisons were performed. Results: Out of 1842 breast cancer patients, about 1290 (70.02%) recovered/cured the disease. The median cure time from breast cancer is found at 12.8 months. The model comparison suggested that the lognormal parametric shared a frailty survival regression model predicted that treatment, stage of breast cancer, smoking habit, and marital status significantly affects the first recurrence of breast cancer. Conclusion: Factors like treatment, stages of cancer, and marital status were improved while smoking habits worsened the time to cure breast cancer. Recommendation: Thus, the authors recommend reducing breast cancer health problems, the regional health sector facilities need to be improved. More importantly, concerned bodies and medical doctors should emphasize the identified factors during treatment. Furthermore, general awareness programs should be given to the community on the identified factors.

Keywords: acceleration factor, breast cancer, Ethiopia, shared frailty survival models, Tigray

Procedia PDF Downloads 135
626 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: shear strength parameters, direct shear test, silty sand, shear stress, shear deformation

Procedia PDF Downloads 163
625 Active Contours for Image Segmentation Based on Complex Domain Approach

Authors: Sajid Hussain

Abstract:

The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.

Keywords: image segmentation, active contour, level set, Mumford and Shah model

Procedia PDF Downloads 114
624 Clay Hydrogel Nanocomposite for Controlled Small Molecule Release

Authors: Xiaolin Li, Terence Turney, John Forsythe, Bryce Feltis, Paul Wright, Vinh Truong, Will Gates

Abstract:

Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications.

Keywords: hydrogel, nanocomposite, small molecule, wound healing

Procedia PDF Downloads 269
623 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: PCM, TES, LHSU, melting

Procedia PDF Downloads 261
622 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 78
621 Safety Approach Highway Alignment Optimization

Authors: Seyed Abbas Tabatabaei, Marjan Naderan Tahan, Arman Kadkhodai

Abstract:

An efficient optimization approach, called feasible gate (FG), is developed to enhance the computation efficiency and solution quality of the previously developed highway alignment optimization (HAO) model. This approach seeks to realistically represent various user preferences and environmentally sensitive areas and consider them along with geometric design constraints in the optimization process. This is done by avoiding the generation of infeasible solutions that violate various constraints and thus focusing the search on the feasible solutions. The proposed method is simple, but improves significantly the model’s computation time and solution quality. On the other, highway alignment optimization through Feasible Gates, eventuates only economic model by considering minimum design constrains includes minimum reduce of circular curves, minimum length of vertical curves and road maximum gradient. This modelling can reduce passenger comfort and road safety. In most of highway optimization models, by adding penalty function for each constraint, final result handles to satisfy minimum constraint. In this paper, we want to propose a safety-function solution by introducing gift function.

Keywords: safety, highway geometry, optimization, alignment

Procedia PDF Downloads 409
620 Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling

Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón

Abstract:

Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.

Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD

Procedia PDF Downloads 487
619 Application of Electrical Resistivity Surveys on Constraining Causes of Highway Pavement Failure along Ajaokuta-Anyigba Road, North Central Nigeria

Authors: Moroof, O. Oloruntola, Sunday Oladele, Daniel, O. Obasaju, Victor, O Ojekunle, Olateju, O. Bayewu, Ganiyu, O. Mosuro

Abstract:

Integrated geophysical methods involving Vertical Electrical Sounding (VES) and 2D resistivity survey were deployed to gain an insight into the influence of the two varying rock types (mica-schist and granite gneiss) underlying the road alignment to the incessant highway failure along Ajaokuta-Anyigba, North-central Nigeria. The highway serves as a link-road for the single largest cement factory in Africa (Dangote Cement Factory) and two major ceramic industries to the capital (Abuja) via Lokoja. 2D Electrical Resistivity survey (Dipole-Dipole Array) and Vertical Electrical Sounding (VES) (Schlumberger array) were employed. Twenty-two (22) 2D profiles were occupied, twenty (20) conducted about 1 m away from the unstable section underlain by mica-schist with profile length each of approximately 100 m. Two (2) profiles were conducted about 1 m away from the stable section with a profile length of 100 m each due to barriers caused by the drainage system and outcropping granite gneiss at the flanks of the road. A spacing of 2 m was used for good image resolution of the near-surface. On each 2D profile, a range of 1-3 VES was conducted; thus, forty-eight (48) soundings were acquired. Partial curve matching and WinResist software were used to obtain the apparent and true resistivity values of the 1D survey, while DiprofWin software was used for processing the 2-D survey. Two exposed lithologic sections caused by abandoned river channels adjacent to two profiles as well as the knowledge of the geology of the area helped to constrain the VES and 2D processing and interpretation. Generally, the resistivity values obtained reflect the parent rock type, degree of weathering, moisture content and competency of the tested area. Resistivity values < 100; 100 – 950; 1000 – 2000 and > 2500 ohms-m were interpreted as clay, weathered layer, partly weathered layer and fresh basement respectively. The VES results and 2-D resistivity structures along the unstable segment showed similar lithologic characteristics and sequences dominated by clayey substratum for depths range of 0 – 42.2 m. The clayey substratum is a product of intensive weathering of the parent rock (mica-schist) and constitutes weak foundation soils, causing highway failure. This failure is further exacerbated by several heavy-duty trucks which ply the section round the clock due to proximity to two major ceramic industries in the state and lack of drainage system. The two profiles on the stable section show 2D structures that are remarkably different from those of the unstable section with very thin topsoils, higher resistivity weathered substratum (indicating the presence of coarse fragments from the parent rock) and shallow depth to the basement (1.0 – 7. 1 m). Also, the presence of drainage and lower volume of heavy-duty trucks are contributors to the pavement stability of this section of the highway. The resistivity surveys effectively delineated two contrasting soil profiles of the subbase/subgrade that reflect variation in the mineralogy of underlying parent rocks.

Keywords: clay, geophysical methods, pavement, resistivity

Procedia PDF Downloads 167
618 Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads

Authors: R. Ziaie Moayed, M. Hossein Zade

Abstract:

Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength.

Keywords: encased stone column, laterally load, ordinary stone column, validation

Procedia PDF Downloads 369
617 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
616 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images

Procedia PDF Downloads 303