Search results for: tall commercial buildings
3090 Application of Electrochromic Glazing for Reducing Peak Cooling Loads
Authors: Ranojoy Dutta
Abstract:
HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load
Procedia PDF Downloads 1303089 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape
Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin
Abstract:
It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.Keywords: daily light integral, plant design, urban open space
Procedia PDF Downloads 5113088 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore
Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski
Abstract:
Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.Keywords: solar insulation film, building energy efficiency, tropics, cooling load
Procedia PDF Downloads 1933087 Sensitivity and Reliability Analysis of Masonry Infilled Frames
Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar
Abstract:
The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.Keywords: fragility curve, sensitivity analysis, reliability index, RC frames
Procedia PDF Downloads 3233086 Properties of Concrete with Wood Ashes in Construction Engineering
Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht
Abstract:
Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC
Procedia PDF Downloads 1443085 Free and Open Source Software for BIM Workflow of Steel Structure Design
Authors: Danilo Di Donato
Abstract:
The continuous new releases of free and open source software (FOSS) and the high costs of proprietary software -whose monopoly is characterized by closed codes and the low level of implementation and customization of software by end-users- impose a reflection on possible tools that can be chosen and adopted for the design and the representation of new steel constructions. The paper aims to show experimentation carried out to verify the actual potential and the effective applicability of FOSS supports to the BIM modeling of steel structures, particularly considering the goal of a possible workflow in order to achieve high level of development (LOD); allow effective interchange methods between different software. To this end, the examined software packages are those with open source or freeware licenses, in order to evaluate their use in architectural praxis. The test has primarily involved the experimentation of Freecad -the only Open Source software that allows a complete and integrated BIM workflow- and then the results have been compared with those of two proprietary software, Sketchup and TeklaBim Sight, which are released with a free version, but not usable for commercial purposes. The experiments carried out on Open Source, and freeware software was then compared with the outcomes that are obtained by two proprietary software, Sketchup Pro and Tekla Structure which has special modules particularly addressed to the design of steel structures. This evaluation has concerned different comparative criteria, that have been defined on the basis of categories related to the reliability, the efficiency, the potentiality, achievable LOD and user-friendliness of the analyzed software packages. In order to verify the actual outcomes of FOSS BIM for the steel structure projects, these results have been compared with a simulation related to a real case study and carried out with a proprietary software BIM modeling. Therefore, the same design theme, the project of a shelter of public space, has been developed using different software. Therefore the purpose of the contribution is to assess what are the developments and potentialities inherent in FOSS BIM, in order to estimate their effective applicability to professional practice, their limits and new fields of research they propose.Keywords: BIM, steel buildings, FOSS, LOD
Procedia PDF Downloads 1743084 Differential Analysis: Crew Resource Management and Profiles on the Balanced Inventory of Desirable Responding
Authors: Charalambos C. Cleanthous, Ryan Sain, Tabitha Black, Stephen Vera, Suzanne Milton
Abstract:
A concern when administering questionnaires is whether the participant is providing information that is accurate. The results may be invalid because the person is trying to present oneself in an unrealistic positive manner referred to as ‘faking good’, or in an unrealistic negative manner known as ‘faking bad’. The Balanced Inventory of Desirable Responding (BIDR) was used to assess commercial pilots’ responses on the two subscales of the BIDR: impression management (IM) and self-deceptive enhancement (SDE) that result in high or low scores. Thus, the BIDR produces four valid profiles: IM low and SDE low, IM high and SDE low, IM low and SDE high, and IM high and SDE high. The various profiles were used to compare the respondents’ answers to crew resource management (CRM) items developed from the USA Federal Aviation Administration’s (FAA) guidelines for CRM composition and training. Of particular interest were the results on the IM subscale. The comparisons between those scoring high (lying or faking) versus those low on the IM suggest that there were significant differences regarding their views of the various dimensions of CRM. One of the more disconcerting conclusions is that the high IM scores suggest that the pilots were trying to impress rather than honestly answer the questions regarding their CRM training and practice.Keywords: USA commercial pilots, crew resource management, faking, social desirability
Procedia PDF Downloads 2563083 Continuous Blood Pressure Measurement from Pulse Transit Time Techniques
Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen
Abstract:
Pulse Blood pressure (BP) is one of the vital signs, and is an index that helps determining the stability of life. In this respect, some spinal cord injury patients need to take the tilt table test. While doing the test, the posture changes abruptly, and may cause a patient’s BP to change abnormally. This may cause patients to feel discomfort, and even feel as though their life is threatened. Therefore, if a continuous non-invasive BP assessment system were built, it could help to alert health care professionals in the process of rehabilitation when the BP value is out of range. In our research, BP assessed by the pulse transit time technique was developed. In the system, we use a self-made photoplethysmograph (PPG) sensor and filter circuit to detect two PPG signals and to calculate the time difference. The BP can immediately be assessed by the trend line. According to the results of this study, the relationship between the systolic BP and PTT has a highly negative linear correlation (R2=0.8). Further, we used the trend line to assess the value of the BP and compared it to a commercial sphygmomanometer (Omron MX3); the error rate of the system was found to be in the range of ±10%, which is within the permissible error range of a commercial sphygmomanometer. The continue blood pressure measurement from pulse transit time technique may have potential to become a convenience method for clinical rehabilitation.Keywords: continous blood pressure measurement, PPG, time transit time, transit velocity
Procedia PDF Downloads 3543082 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS
Authors: V. Sulakatko, F. U. Vogdt, I. Lill
Abstract:
Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing
Procedia PDF Downloads 2963081 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers
Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen
Abstract:
In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.Keywords: centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA
Procedia PDF Downloads 3923080 Efficacy of Pooled Sera in Comparison with Commercially Acquired Quality Control Sample for Internal Quality Control at the Nkwen District Hospital Laboratory
Authors: Diom Loreen Ndum, Omarine Njimanted
Abstract:
With increasing automation in clinical laboratories, the requirements for quality control materials have greatly increased in order to monitor daily performance. The constant use of commercial control material is not economically feasible for many developing countries because of non-availability or the high-cost of the materials. Therefore, preparation and use of in-house quality control serum will be a very cost-effective measure with respect to laboratory needs.The objective of this study was to determine the efficacy of in-house prepared pooled sera with respect to commercially acquired control sample for routine internal quality control at the Nkwen District Hospital Laboratory. This was an analytical study, serum was taken from leftover serum samples of 5 healthy adult blood donors at the blood bank of Nkwen District Hospital, which had been screened negative for human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Hepatitis B antigens (HBsAg), and were pooled together in a sterile container. From the pooled sera, sixty aliquots of 150µL each were prepared. Forty aliquots of 150µL each of commercially acquired samples were prepared after reconstitution and stored in a deep freezer at − 20°C until it was required for analysis. This study started from the 9th June to 12th August 2022. Every day, alongside with commercial control sample, one aliquot of pooled sera was removed from the deep freezer and allowed to thaw before analyzed for the following parameters: blood urea, serum creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), potassium and sodium. After getting the first 20 values for each parameter of pooled sera, the mean, standard deviation and coefficient of variation were calculated, and a Levey-Jennings (L-J) chart established. The mean and standard deviation for commercially acquired control sample was provided by the manufacturer. The following results were observed; pooled sera had lesser standard deviation for creatinine, urea and AST than commercially acquired control samples. There was statistically significant difference (p<0.05) between the mean values of creatinine, urea and AST for in-house quality control when compared with commercial control. The coefficient of variation for the parameters for both commercial control and in-house control samples were less than 30%, which is an acceptable difference. The L-J charts revealed shifts and trends (warning signs), so troubleshooting and corrective measures were taken. In conclusion, in-house quality control sample prepared from pooled serum can be a good control sample for routine internal quality control.Keywords: internal quality control, levey-jennings chart, pooled sera, shifts, trends, westgard rules
Procedia PDF Downloads 773079 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami
Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda
Abstract:
Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort
Procedia PDF Downloads 673078 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 1803077 Ground Deformation Module for the New Laboratory Methods
Authors: O. Giorgishvili
Abstract:
For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.Keywords: build, deformation modulus, foundations, ground, laboratory research
Procedia PDF Downloads 3693076 Pre-Industrial Local Architecture According to Natural Properties
Authors: Selin Küçük
Abstract:
Pre-industrial architecture is integration of natural and subsequent properties by intelligence and experience. Since various settlements relatively industrialized or non-industrialized at any time, ‘pre-industrial’ term does not refer to a definite time. Natural properties, which are existent conditions and materials in natural local environment, are climate, geomorphology and local materials. Subsequent properties, which are all anthropological comparatives, are culture of societies, requirements of people and construction techniques that people use. Yet, after industrialization, technology took technique’s place, cultural effects are manipulated, requirements are changed and local/natural properties are almost disappeared in architecture. Technology is universal, global and expands simply; conversely technique is time and experience dependent and should has a considerable cultural background. This research is about construction techniques according to natural properties of a region and classification of these techniques. Understanding local architecture is only possible by searching its background which is hard to reach. There are always changes in positive and negative in architectural techniques through the time. Archaeological layers of a region sometimes give more accurate information about transformation of architecture. However, natural properties of any region are the most helpful elements to perceive construction techniques. Many international sources from different cultures are interested in local architecture by mentioning natural properties separately. Unfortunately, there is no literature deals with this subject as far as systematically in the correct way. This research aims to improve a clear perspective of local architecture existence by categorizing archetypes according to natural properties. The ultimate goal of this research is generating a clear classification of local architecture independent from subsequent (anthropological) properties over the world such like a handbook. Since local architecture is the most sustainable architecture with refer to its economic, ecologic and sociological properties, there should be an excessive information about construction techniques to be learned from. Constructing the same buildings in all over the world is one of the main criticism of modern architectural system. While this critics going on, the same buildings without identity increase incrementally. In post-industrial term, technology widely took technique’s place, yet cultural effects are manipulated, requirements are changed and natural local properties are almost disappeared in architecture. These study does not offer architects to use local techniques, but it indicates the progress of pre-industrial architectural evolution which is healthier, cheaper and natural. Immigration from rural areas to developing/developed cities should be prohibited, thus culture and construction techniques can be preserved. Since big cities have psychological, sensational and sociological impact on people, rural settlers can be convinced to not to immigrate by providing new buildings designed according to natural properties and maintaining their settlements. Improving rural conditions would remove the economical and sociological gulf between cities and rural. What result desired to arrived in, is if there is no deformation (adaptation process of another traditional buildings because of immigration) or assimilation in a climatic region, there should be very similar solutions in the same climatic regions of the world even if there is no relationship (trade, communication etc.) among them.Keywords: climate zones, geomorphology, local architecture, local materials
Procedia PDF Downloads 4283075 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts
Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter
Abstract:
Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings
Procedia PDF Downloads 1223074 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce
Authors: Hang Wang, Xiaoming Gao
Abstract:
The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.Keywords: big data, consumption centers, e-commerce, urban planning, jinan
Procedia PDF Downloads 203073 The Influence of Shear Wall Position on Seismic Performance in Buildings
Authors: Akram Khelaifia, Nesreddine Djafar Henni
Abstract:
Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses
Procedia PDF Downloads 533072 Screens Design and Application for Sustainable Buildings
Authors: Fida Isam Abdulhafiz
Abstract:
Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education
Procedia PDF Downloads 2983071 Steel Concrete Composite Bridge: Modelling Approach and Analysis
Authors: Kaviyarasan D., Satish Kumar S. R.
Abstract:
India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge
Procedia PDF Downloads 1853070 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure
Authors: Ayman Abd-Elhamed, Sayed Mahmoud
Abstract:
The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shaking. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.Keywords: masonry infill, bare frame, response spectrum, seismic response
Procedia PDF Downloads 4033069 A New Method of Extracting Polyphenols from Honey Using a Biosorbent Compared to the Commercial Resin Amberlite XAD2
Authors: Farid Benkaci-Alia, Abdelhamid Neggada, Sophie Laurentb
Abstract:
A new extraction method of polyphenols from honey using a biodegradable resin was developed and compared with the common commercial resin amberlite XAD2. For this purpose, three honey samples of Algerian origin were selected for the different physico-chemical and biochemical parameters study. After extraction of the target compounds by both resins, the polyphenol content was determined, the antioxidant activity was tested, and LC-MS analyses were performed for identification and quantification. The results showed that physico-chemical and biochemical parameters meet the norms of the International Honey commission, and the H1 sample seemed to be of high quality. The optimal conditions of extraction by biodegradable resin were a pH of 3, an adsorption dose of 40 g/L, a contact time of 50 min, an extraction temperature of 60°C and no stirring. The regeneration and reuse number of both resins was three cycles. The polyphenol contents demonstrated a higher extraction efficiency of biosorbent than of XAD2, especially in H1. LC-MS analyses allowed for the identification and quantification of fifteen compounds in the different honey samples extracted using both resins and the most abundant compound was 3,4,5-trimethoxybenzoic acid. In addition, the biosorbent extracts showed stronger antioxidant activities than the XAD2 extracts.Keywords: extraction, polyphénols, biosorbent, resin amberlite, HPLC-MS
Procedia PDF Downloads 1053068 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications
Authors: Catherine Kuforiji, Michel Nganbe
Abstract:
The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.Keywords: SS316L, Al2O3, powder metallurgy, wear characterization
Procedia PDF Downloads 3043067 Structural Assessment of Low-Rise Reinforced Concrete Frames under Tsunami Loads
Authors: Hussain Jiffry, Kypros Pilakoutas, Reyes Garcia Lopez
Abstract:
This study examines the effect of tsunami loads on reinforced concrete (RC) frame buildings analytically. The impact of tsunami wave loads and waterborne objects are analyzed using a typical substandard full-scale two-story RC frame building tested as part of the EU-funded Ecoleader project. The building was subjected to shake table tests in bare condition and subsequently strengthened using Carbon Fiber Reinforced Polymers (CFRP) composites and retested. Numerical models of the building in both bare and CFRP-strengthened conditions are calibrated in DRAIN-3DX software to match the test results. To investigate the response of wave loads and impact forces, the numerical models are subjected to nonlinear dynamic analyses using force-time history input records. The analytical results are compared in terms of displacements at the floors and the 'impact point' of a boat. The results show that the roof displacement of the CFRP-strengthened building reduced by 63% when compared to the bare building. The results also indicate that strengthening only the mid-height of the impact column using CFRP is more efficient at reducing damage when compared to strengthening other parts of the column. Alternative solutions to mitigate damage due to tsunami loads are suggested.Keywords: tsunami loads, hydrodynamic load, impact load, waterborne objects, RC buildings
Procedia PDF Downloads 4563066 A New Direction of Urban Regeneration: Form-Based Urban Reconstruction through the Idea of Bricolage
Authors: Hyejin Song, Jin Baek
Abstract:
Based on the idea of bricolage that a new meaning beyond that of each of objects can be created through combination and juxtaposition of various objets, this study finds a way of morphological-recomposing of urban space through combination and juxtaposition of existing urban fabric and new fabric and suggests this idea as new direction of urban regeneration. This study sets concept of bricolage as a philosophical ground of interpreting contemporary urban situation. In this concept, urban objects such as buildings from various zeitgeists are positively considered as potential textures which can construct meaningful context. Seoul, as the city having long history and experiencing colonization and development, appears dynamic urban structure full of various objects from various periods. However, in contrast with successful plazas and streets in Europe, objects in Seoul do not make a meaningful context as public space due to thoughtless development. This study defines this situation as ‘disorgnized-fabric’. Following the concept of bricolage, to find the way for those existing scattered objects to be organized as a context of meaningful public space, this study firstly researches the case of successful public space by morphological analysis. Secondly, this study carefully explores urban space in Seoul, and draws figure-ground diagram to grasp the form of current urban fabric by various urban-objects. As a result of exploration, a lot of urban spaces from Myeong-dong, one of vibrant commercial district in Seoul, to declining residential area are judged as having potential fabric which can become meaningful context by just small adjustment of relationship between existing objects. This study also confirmed that by inserting a new object with consideration of form of existing fabric, it is possible to accord a new context as plaza to existing void which have broken as several parts. This study defines it as form-based urban reconstruction through the idea of bricolage, and suggests that it could be one of philosophical ground of successful urban regeneration.Keywords: adjustment of relationship between existing objets, bricolage, morphological analysis of urban fabric, urban regeneration, urban reconstruction
Procedia PDF Downloads 3183065 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study
Authors: Dinesh Kumar Maurya, Sapan Mohan Saini
Abstract:
A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound
Procedia PDF Downloads 3493064 Single Cu‒N₄ Sites Enable Atomic Fe Clusters with High-Performance Oxygen Reduction Reaction
Abstract:
Atomically dispersed Fe‒N₄ catalysts are proven as promising alternatives to commercial Pt/C for the oxygen reduction reaction. Most reported Fe‒N₄ catalysts suffer from inferior O‒O bond-breaking capability due to superoxo-like O₂ adsorption, though the isolated dual-atomic metal sites strategy is extensively adopted. Atomic Fe clusters hold greater promise for promoting O‒O bond cleavage by forming peroxo-like O₂ adsorption. However, the excessively strong binding strength between Fe clusters and oxygenated intermediates sacrifices the activity. Here, we first report a Fex/Cu‒N@CF catalyst with atomic Fe clusters functionalized by adjacent single Cu‒N₄ sites anchoring on a porous carbon nanofiber membrane. The theoretical calculation indicates that the single Cu‒N₄ sites can modulate the electronic configuration of Fe clusters to reduce O₂* protonation reaction free energy, which ultimately enhances the electrocatalytic performance. Particularly, the Cu‒N₄ sites can increase the overlaps between the d orbitals of Fe and p orbitals of O to accelerate O‒O cleavage in OOH*. As a result, this unique atomic catalyst exhibits a half potential (E1/2) of 0.944 V in an alkaline medium exceeding that of commercial Pt/C, whereas acidic performance E1/2 = 0.815 V is comparable to Pt/C. This work shows the great potential of single atoms for improvements in atomic cluster catalysts.Keywords: Hierarchical porous fibers, atomic Fe clusters, Cu single atoms, oxygen reduction reaction; O-O bond cleavage
Procedia PDF Downloads 1163063 Influence of Different Light Levels in Amaryllis (Hippeastrum X hybridum Hort.) Development and Flowering
Authors: Regina Maria M. Castilho, Isabela M. Morita, Ana Carolina T. Malavolta, Maximiliano K. Pagliarini
Abstract:
An essential factor for flower production is solar radiation, which is part of plant vital processes. As excess as shortage of light can harm the development of the culture leading to loss in product quality, Unfeasible or decreasing their commercial value. The objective of this research was to evaluate different light levels and their influence on Amaryllis (Hippeastrum X hybridum Hort.) development and flowering. The experiment was conducted at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 4 different lighting environments (treatments): T1–greenhouse, T2–greenhouse with shade cloth (50%), T3–low lights indoor (until 500 lx) and T4–medium lights indoor (between 500–1000 lx). The used design was completely randomized with ten repetitions and three vessels (bulbs), totalling 30 vessels (bulbs) per treatment. The evaluated characteristics were: Chlorophyll content, number of leaves, length of leaf, number of simultaneous rods, rod length, rod diameter, number of flowers, flowers diameter, beginning of flowering and flowering duration. The results showed that in greenhouse provided Amaryllis better quality plants.Keywords: açucena, bulbs, light, ornamental plants
Procedia PDF Downloads 4543062 Semiotics of the New Commercial Music Paradigm
Authors: Mladen Milicevic
Abstract:
This presentation will address how the statistical analysis of digitized popular music influences the music creation and emotionally manipulates consumers.Furthermore, it will deal with semiological aspect of uniformization of musical taste in order to predict the potential revenues generated by popular music sales. In the USA, we live in an age where most of the popular music (i.e. music that generates substantial revenue) has been digitized. It is safe to say that almost everything that was produced in last 10 years is already digitized (either available on iTunes, Spotify, YouTube, or some other platform). Depending on marketing viability and its potential to generate additional revenue most of the “older” music is still being digitized. Once the music gets turned into a digital audio file,it can be computer-analyzed in all kinds of respects, and the similar goes for the lyrics because they also exist as a digital text file, to which any kin of N Capture-kind of analysis may be applied. So, by employing statistical examination of different popular music metrics such as tempo, form, pronouns, introduction length, song length, archetypes, subject matter,and repetition of title, the commercial result may be predicted. Polyphonic HMI (Human Media Interface) introduced the concept of the hit song science computer program in 2003.The company asserted that machine learning could create a music profile to predict hit songs from its audio features Thus,it has been established that a successful pop song must include: 100 bpm or more;an 8 second intro;use the pronoun 'you' within 20 seconds of the start of the song; hit the bridge middle 8 between 2 minutes and 2 minutes 30 seconds; average 7 repetitions of the title; create some expectations and fill that expectation in the title. For the country song: 100 bpm or less for a male artist; 14-second intro; uses the pronoun 'you' within the first 20 seconds of the intro; has a bridge middle 8 between 2 minutes and 2 minutes 30 seconds; has 7 repetitions of title; creates an expectation,fulfills it in 60 seconds.This approach to commercial popular music minimizes the human influence when it comes to which “artist” a record label is going to sign and market. Twenty years ago,music experts in the A&R (Artists and Repertoire) departments of the record labels were making personal aesthetic judgments based on their extensive experience in the music industry. Now, the computer music analyzing programs, are replacing them in an attempt to minimize investment risk of the panicking record labels, in an environment where nobody can predict the future of the recording industry.The impact on the consumers taste through the narrow bottleneck of the above mentioned music selection by the record labels,created some very peculiar effects not only on the taste of popular music consumers, but also the creative chops of the music artists as well. What is the meaning of this semiological shift is the main focus of this research and paper presentation.Keywords: music, semiology, commercial, taste
Procedia PDF Downloads 3933061 Seismic Behavior of Masonry Reinforced Concrete Composite Columns
Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki
Abstract:
To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing
Procedia PDF Downloads 219